{"title":"Development of Overlapped Designed Coils for Transcranial Magnetic Stimulations","authors":"Sohom Bhattacharjee;Choon Sik Cho;Dong Sik Cho","doi":"10.1109/LMAG.2023.3295271","DOIUrl":"https://doi.org/10.1109/LMAG.2023.3295271","url":null,"abstract":"Transcranial magnetic stimulation (TMS) is a noninvasive neuromodulation technique that is used to treat a variety of neurological disorders, including major depression. The development of the deep brain TMS coil for stimulating subcortical structures expands the use of TMS beyond the stimulation of superficial cortical targets. Deep brain stimulation may have beneficial effects on neurological disorders such as Parkinson's disease, post-traumatic stress disorder, and mild traumatic brain injury. Previous studies have shown that the cerebellum plays a very big role in behavior and motor planning. To stimulate the specific areas of the human brain, we require a TMS coil with precise focal abilities because the material, design, and position of a TMS coil play a significant role in adjusting the coil's focusing power. Therefore, we studied stimulation of the frontal brain and cerebellum with two different new coil designs positioned on different locations. A rare design of the TMS coil made with Litz wire was developed to enhance excitation focality in the brain and was compared with a traditional figure-of-eight (FOE) coil and double-cone coil. The finite-element simulation tool ANSYS Maxwell 3-D has been used to simulate and compare the magnetic field and electric field induced inside the model of the human brain. The coil studies are as follows: a FOE coil, an overlapped copper coil, and a Litz wire overlapped coil. This was followed by experimental validation which shows great agreement with the simulation results.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67762070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-Density 1T1D1SOT-MRAM With Multimode Ultrahigh-Speed Magnetization Switching","authors":"Hao Zhang;Di Wang;Long Liu;Xuefeng Zhao;Huai Lin;Changqing Xie","doi":"10.1109/LMAG.2023.3293407","DOIUrl":"https://doi.org/10.1109/LMAG.2023.3293407","url":null,"abstract":"In this letter, we present a 1T1D1M-based (one transistor, one diode, and one magnetic tunnel junction) spin-orbit torque, magnetic random-access memory (SOT-MRAM) with multimode magnetization switching for high-density memory, ultrahigh-speed writing, and energy-efficient on-chip memory application. The conventional spin-transfer torque (STT)-MRAM or SOT-MRAM is limited by the unipolar (or bipolar) switching property and demands the utilization of a common channel with bidirectional write current, which not only brings about source degradation of the access transistor but also increases the energy consumption in the write operation. By introducing a Schottky diode, the 1T1D1SOT-MRAM cell based on ultrafast switching of multiple modes outperforms conventional MRAMs in terms of decoupling of current channels in different directions and high-density integration. Simulation results show that the MRAM achieves 82% and 100% reduction in bit-cell area compared with STT-MRAM and SOT-MRAM, respectively, and ∼3.3× improvement in write energy consumption in comparison with STT-MRAM.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67763004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Moderate Static Magnetic Field on Membrane Potential of Abdominal Nerve Fiber in Metapenaeus Ensis","authors":"Siyuan Liu;Shupeng Liu;Yongyong Gong;Jinbo Chen;Hengyu Li;Zhizheng Wu;Ze Cui;Mei Liu;Jingtao Lei;Tao Wang","doi":"10.1109/LMAG.2023.3293391","DOIUrl":"https://doi.org/10.1109/LMAG.2023.3293391","url":null,"abstract":"The effects of uniform and static moderate magnetic fields (0–400 mT) on the membrane potential of nerve fibers in \u0000<italic>Metapenaeus ensis</i>\u0000 shrimps were investigated. The results showed that the magnetic field caused an increase in membrane potential, eventually reaching a static state, and that effects of short-term exposure were largely reversible. A nonlinear relationship between the percentage change in membrane potential (\u0000<italic>V%</i>\u0000) and magnetic field induction was observed, where \u0000<italic>V%</i>\u0000 increased rapidly below an inflection point (around 200 mT) and slowed down thereafter. Hypotheses suggest that ion channels in the membrane have varying sensitivities to magnetic fields and presented the distribution of ion channel activation thresholds within the 0–400 mT range. The identification of the inflection point holds great practical value in the fields of magnetic field therapy, exposure limits, and magnetic shielding design.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67919307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ke Liu;Hongsong Miao;Qiang Fu;Yuqi Pang;Yangyi Sui
{"title":"Error Characteristic Analysis and Error Source Identification of Aeromagnetic Field Gradient Tensor Measurements","authors":"Ke Liu;Hongsong Miao;Qiang Fu;Yuqi Pang;Yangyi Sui","doi":"10.1109/LMAG.2023.3290534","DOIUrl":"https://doi.org/10.1109/LMAG.2023.3290534","url":null,"abstract":"Aeromagnetic gradient tensor measurement has become a powerful method in geological surveys, mineral resource exploration, and other applications due to its ability to resist temporal changes of the geomagnetic field and its ability to provide rich information and be highly efficient. Various factors may affect the quality of aeromagnetic gradient tensor measurements, including systematic errors of the measurement system, magnetic interference from the carrying platform, and unexpected environmental impacts. But there are no methods for analyzing and identifying them at present. Therefore, we model an error source identification method based on a transforming deviation matrix, which is constructed according to the generalized Hilbert transform relations among the tensor components and reflects the error characteristics of the measurements. Our method provides a basis for guiding data processing and reducing waste of financial, material, and human resources through timely adjustments of experimental schemes. The correctness and engineering practicality of the method have been verified by simulation and field experiments.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67762117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physics-Informed Sparse Neural Network for Permanent Magnet Eddy Current Device Modeling and Analysis","authors":"Dazhi Wang;Sihan Wang;Deshan Kong;Jiaxing Wang;Wenhui Li;Michael Pecht","doi":"10.1109/LMAG.2023.3288388","DOIUrl":"https://doi.org/10.1109/LMAG.2023.3288388","url":null,"abstract":"The objective is to study the prediction of the electromagnetic (EM) field and the output performance of permanent magnet eddy current devices (PMECDs) based on a physics-informed sparse neural network (PISNN). In order to achieve this goal, a unified physical model is first defined according to different types of PMECDs, which is equivalent to solving a parameterized magnetic quasi-static problem. A soft constraint module and a hard constraint module, composed of physical equations, are constructed. The soft constraints are then integrated into the neural network's objective function, while the hard constraint module is utilized to predict device performance and physical field. Stochastic gradient descent is used to minimize the residual of the physical equations during PISNN training. Subsequently, the structural parameters and operating parameters of the PMECD are modified to verify the generalization ability of the model. Our results indicate that PISNN accurately and efficiently predicts the EM field distribution and the output torque. Furthermore, our prediction results for permanent magnet eddy current devices with different parameters demonstrate the potential of the method for transfer learning.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67762115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance Simulation of Multiferroic Neuron Device Driven by an Inclined Monopulse Clock","authors":"Shuqing Dou;Xiaokuo Yang;Jiahui Yuan;Yongshun Xia;Xin Bai;Huanqing Cui;Bo Wei","doi":"10.1109/LMAG.2023.3287396","DOIUrl":"https://doi.org/10.1109/LMAG.2023.3287396","url":null,"abstract":"Multiferroic nanomagnet neuron devices have the advantages of ultralow power consumption and high integration, which give them promising applications in neuromorphic computing. In this letter, a multiferroic nanomagnet neuron device driven by an inclined monopulse clock is modeled. The strain field direction of the device is at an angle to the nanomagnet's long axis, and the nanomagnet's magnetic moment can be driven to switch randomly 0°/180° by applying a pulse voltage of 0.1 ns pulse width only, thus realizing artificial neuron functions. The numerical model of the neuron device is established based on the Landau–Lifshitz–Gilbert equation. The numerical simulation results indicate that the neuron device can complete high-speed neuromorphic computation with tiny energy use (∼2.65 aJ). Additionally, a three-layer artificial neural network based on neuron devices is built. The simulation results demonstrate that the network can recognize handwritten digits in the Modified National Institute of Standards and Technology (MNIST) dataset at a rate of more than 98% and has a high tolerance for process error. The device has significant advantages over conventional spin neuron devices, including a simple structure, ultralow energy consumption, fast computation capabilities, and a wide fabrication process error tolerance range. The study results in this letter offer crucial theoretical recommendations for applying strain magneto-electronic devices in neuromorphic computing.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67762071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In Vivo Measurement of Cerebral SPIO Concentration in Nonhuman Primate Using Magnetic Particle Imaging Detector","authors":"Hui Hui;Jiaojiao Liu;Hui Zhang;Jing Zhong;Jie He;Bo Zhang;Haoran Zhang;Qin Li;Hongjun Li;Jie Tian","doi":"10.1109/LMAG.2023.3281933","DOIUrl":"https://doi.org/10.1109/LMAG.2023.3281933","url":null,"abstract":"The purpose of this study is to develop a magnetic particle imaging (MPI) technique to directly measure time-varied cerebral superparamagnetic iron oxide nanoparticle (SPIO) concentration in rhesus macaques. A hand-held MPI detector was developed to monitor MPI signal changes at the third harmonics of the drive frequency in resting-state nonhuman primates. Phantom experiments were first performed to determine the sensitivity limits of the detector as a function of distance from the detector and SPIO concentration. The measured sensitivity profile was then used to reveal the most sensitive region of the detector. MPI detection was continuously performed to monitor MPI signal changes after two bolus injections of SPIOs in the rhesus macaque. We successfully developed a hand-held MPI to detect cerebral SPIO concentration changes in a living nonhuman primate. The detection limit of the MPI detector is about 125 ng iron. We reported on the \u0000<italic>in vivo</i>\u0000 measurement of cerebral SPIO concentration changes in rhesus macaque using a hand-held MPI detector. \u0000<italic>In vivo</i>\u0000 experiments showed the feasibility of the detector to sensitively measure MPI signals in a nonhuman primate brain.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/5165412/10018138/10141661.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67762116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Atsuki Kobayashi;Kohya Sano;Junpei Sakurai;Hosei Nagano;Seiichi Hata;Chiemi Oka
{"title":"Unidirectional Pore Formation in Resins Using a Magnetic-Nanoparticle-Chain Template","authors":"Atsuki Kobayashi;Kohya Sano;Junpei Sakurai;Hosei Nagano;Seiichi Hata;Chiemi Oka","doi":"10.1109/LMAG.2023.3268851","DOIUrl":"https://doi.org/10.1109/LMAG.2023.3268851","url":null,"abstract":"We present a novel manufacturing technique for generating unidirectional pores in ultraviolet (UV)-curable resins using self-assembled magnetic nanoparticles (MNPs) with chain-like structures. The method utilizes two templation mechanisms for pore formation: the UV-masking effect of the MNP chains and the physical presence of MNP chains themselves. Fe\u0000<sub>3</sub>\u0000O\u0000<sub>4</sub>\u0000 nanoparticles and PAK-01 were used as the template and UV-curable resin, respectively. Unidirectional pores formed only when resin/MNP mixtures were cured under a strong externally applied magnetic field. Water absorption tests indicated that some of the unidirectional pores were through-hole-type pores. The pores were cylindrical with an ellipsoidal cross-section. When the UV irradiation angle (\u0000<italic>θ</i>\u0000) was 30°, the long and short diameters of the pores were approximately 9 and 8 \u0000<inline-formula><tex-math>$mu$</tex-math></inline-formula>\u0000m, respectively, before MNP removal, and 12 and 8 \u0000<inline-formula><tex-math>$mu$</tex-math></inline-formula>\u0000m, respectively, after removal. After MNP removal, the ellipticity of the pores in the samples increased from 1.5 to 2.4 with the increase in \u0000<italic>θ</i>\u0000 because of the increased UV-masking effect of the MNP chains.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67763011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sruthy Poulose;Yara Alvarez-Braña;Lourdes Basabel-Desmonts;Fernando Benito-Lopez;John Michael David Coey
{"title":"Magnetic Field Enhancement of Water Evaporation in Confined Spaces","authors":"Sruthy Poulose;Yara Alvarez-Braña;Lourdes Basabel-Desmonts;Fernando Benito-Lopez;John Michael David Coey","doi":"10.1109/LMAG.2023.3262976","DOIUrl":"https://doi.org/10.1109/LMAG.2023.3262976","url":null,"abstract":"Water is studied in confined environments where it evaporates into its own vapor. Simultaneous experiments are conducted for 0.4–0.5 µL droplets confined at the center of 54 mm long microchannels with a cross section of 0.38 mm\u0000<sup>2</sup>\u0000 in the presence and absence of a 300 mT magnetic field. Results are compared with those for water in half-filled 100 mL beakers. The magnetic enhancement of the evaporation rate is much greater in the microchannels, where effects range up to 140% even though the air is saturated with water vapor, as compared to 12 ± 7% in a 500 mT field in the beakers. The average steady state, no-field evaporation rate of 0.13 kg\u0000<inline-formula><tex-math>$cdot$</tex-math></inline-formula>\u0000m\u0000<sup>−2</sup>\u0000<inline-formula><tex-math>$cdot$</tex-math></inline-formula>\u0000h\u0000<sup>−1</sup>\u0000 in the microchannels is roughly double that in the beakers, but less than the value expected at an open surface in still air. The magnetic enhancement is analyzed in terms of the \u0000<italic>ortho</i>\u0000 and \u0000<italic>para</i>\u0000 nuclear isomers of water vapor, which behave as independent gasses. The \u0000<italic>ortho:para</i>\u0000 ratio in fresh vapor is close to 2:3, and quite different from the 3:1 equilibrium ratio in ambient air. Evaporation is increased by the gradient of the applied magnetic field, which dephases the Larmor precession of the two proton spins of hydrogen in a water molecule and tends to equalize the isomeric populations in the vapor, thereby increasing the evaporation rate.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/5165412/10018138/10092455.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67763008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Magnetic Relaxation of Superparamagnetic Fe Oxide Particles Studied With Mössbauer Spectroscopy","authors":"Eiji Kita;Reisho Onodera;Mikio Kishimoto;Hideto Yanagihara","doi":"10.1109/LMAG.2023.3264115","DOIUrl":"https://doi.org/10.1109/LMAG.2023.3264115","url":null,"abstract":"A Mössbauer spectroscopy (MS) study was performed on the superparamagnetic commercially available magnetic fluid, Resovist, with temperatures varying between room temperature and 2.6 K. Two samples were prepared for MS study, one dried specimen and the other frozen. At the lowest temperature of 2.6 K, the spectrum was characteristic of maghemite, and superparamagnetic relaxation was observed with increasing temperature. On the spectrum recorded at 250 K, fitting was performed using the three components in the Blume–Tjon two-state magnetic relaxation model, which resulted in relaxation times of \u0000<inline-formula><tex-math>$3.8 times 10^{-8}$</tex-math></inline-formula>\u0000, \u0000<inline-formula><tex-math>$1.7 times 10^{-8}$</tex-math></inline-formula>\u0000, and \u0000<inline-formula><tex-math>$6.4 times 10^{-10}$</tex-math></inline-formula>\u0000 s for the three components.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67919309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}