IEEE Magnetics Letters最新文献

筛选
英文 中文
A Physics-Based Circuit Model for Magnetic Tunnel Junctions 基于物理的磁隧道结电路模型
IF 1.1 4区 物理与天体物理
IEEE Magnetics Letters Pub Date : 2025-06-06 DOI: 10.1109/LMAG.2025.3577475
Steven Louis;Hannah Bradley;Artem Litvinenko;Vasyl Tyberkevych
{"title":"A Physics-Based Circuit Model for Magnetic Tunnel Junctions","authors":"Steven Louis;Hannah Bradley;Artem Litvinenko;Vasyl Tyberkevych","doi":"10.1109/LMAG.2025.3577475","DOIUrl":"https://doi.org/10.1109/LMAG.2025.3577475","url":null,"abstract":"This work presents an equivalent circuit model for magnetic tunnel junctions (MTJs) that accurately reproduces their magnetization dynamics and electrical behavior within the macrospin approximation. The model is validated through direct numerical simulations of the Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation, encompassing ferromagnetic resonance, field- and spin-torque-induced switching and spin-torque-induced oscillations. Simulation results exhibit excellent agreement between the equivalent circuit model and the LLGS-based simulations, confirming the model accuracy and utility for efficient circuit-level analysis of MTJs. The capability of handling time-dependent magnetic fields and voltage-driven excitations renders the model applicable to diverse areas, including neuromorphic computing, microwave signal processing, and spintronic memory technologies. By providing a computationally efficient yet physically rigorous circuit representation, this work facilitates seamless integration of MTJs into complex electronic systems, thereby accelerating the advancement of novel spintronic circuit architectures.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"16 ","pages":"1-5"},"PeriodicalIF":1.1,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144641078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Method to Suppress Polar Kerr Signal in a Longitudinal Magneto-Optic Kerr Effect Measurement 纵向磁光克尔效应测量中抑制极性克尔信号的方法
IF 1.1 4区 物理与天体物理
IEEE Magnetics Letters Pub Date : 2025-06-06 DOI: 10.1109/LMAG.2025.3577473
Ryan W. Greening;Elyssa D. DeVisscher;Xin Fan
{"title":"Method to Suppress Polar Kerr Signal in a Longitudinal Magneto-Optic Kerr Effect Measurement","authors":"Ryan W. Greening;Elyssa D. DeVisscher;Xin Fan","doi":"10.1109/LMAG.2025.3577473","DOIUrl":"https://doi.org/10.1109/LMAG.2025.3577473","url":null,"abstract":"The magneto-optical Kerr effect (MOKE) is a convenient technique to study the magnetization of thin films. However, both polar and longitudinal MOKE responses contribute to the total Kerr response in a typical longitudinal MOKE measurement. Here, we present a simple optical technique to suppress the polar MOKE response in the oblique angle incidence by exploiting differences between polar and longitudinal MOKE responses upon double reflection from the sample. By using a mirror to reflect the beam and by selectively using a quarter-wave plate, the polar or longitudinal MOKE signals can be suppressed and, therefore, studied separately using the same oblique experimental setup. To demonstrate the feasibility of this technique, we use an out-of-plane magnetized Pt/Co/Pt film and a Pt/Co/Cu/NiFe heterostructure with both in-plane and out-of-plane magnetization. We show that the polar MOKE of the CoPt film can be suppressed by a factor of 6 compared to a conventional MOKE measurement. By accounting for birefringence, we further reduce the polar MOKE response in a longitudinal MOKE measurement of the Pt/Co/Cu/NiFe film by over 160 times compared to a conventional oblique-angle MOKE measurement.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"16 ","pages":"1-5"},"PeriodicalIF":1.1,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144597698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Ta Buffer Layer on Structural and Magnetic Properties of Sputtered Ni2FeAl Ta缓冲层对溅射Ni2FeAl结构和磁性能的影响
IF 1.1 4区 物理与天体物理
IEEE Magnetics Letters Pub Date : 2025-04-28 DOI: 10.1109/LMAG.2025.3564795
Aarzoo Dhull;Prashant Kumar;Vipul Sharma;Pawan S. Rana;Bijoy K. Kuanr
{"title":"Effects of Ta Buffer Layer on Structural and Magnetic Properties of Sputtered Ni2FeAl","authors":"Aarzoo Dhull;Prashant Kumar;Vipul Sharma;Pawan S. Rana;Bijoy K. Kuanr","doi":"10.1109/LMAG.2025.3564795","DOIUrl":"https://doi.org/10.1109/LMAG.2025.3564795","url":null,"abstract":"In the present investigation, we report the growth of off-stoichiometric Ni-based Heusler thin films of different thicknesses (6–30 nm) on a Si (100) substrate by radio frequency sputtering at 300 °C. We have used an indigenously prepared target comprising thin sheets of Ni, Fe, and Al in specific proportions. Of all the Heusler alloys, Ni<sub>2</sub>FeAl is the least researched alloy that may offer immense possibilities in developing spin-based devices. The Ni<sub>55</sub>Fe<sub>14</sub>Al<sub>31</sub> films crystallize into the A2 phase as confirmed by the diffraction pattern. With the increase in the thickness of films, surface roughness improves followed by an increase in saturation magnetization (<italic>M</i><sub>S</sub>). Further, we have explored the effect of Ta buffer on the static and dynamic magnetic behavior of films and compared it with unbuffered films. The Ta buffer layer significantly impacts the surface morphology of the films. The in-plane magnetic hysteresis loops indicate higher <italic>M</i><sub>S</sub> with Ta buffer. Dynamic magnetization is probed via ferromagnetic resonance technique over a broad band of microwave frequencies and has been quantified in terms of Gilbert damping constant (α). The Ta buffer reduces the Gilbert damping constant from 10.1 × 10<sup>−3</sup> to 8.4 × 10<sup>−3</sup> in 30 nm thick films.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"16 ","pages":"1-5"},"PeriodicalIF":1.1,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144314835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of In-Plane Magnetized Grains With a Magnetoresistive Head 磁阻头平面内磁化颗粒的检测
IF 1.1 4区 物理与天体物理
IEEE Magnetics Letters Pub Date : 2025-04-28 DOI: 10.1109/LMAG.2025.3564876
Yifei Chen;R. H. Victora
{"title":"Detection of In-Plane Magnetized Grains With a Magnetoresistive Head","authors":"Yifei Chen;R. H. Victora","doi":"10.1109/LMAG.2025.3564876","DOIUrl":"https://doi.org/10.1109/LMAG.2025.3564876","url":null,"abstract":"Magnesium oxide (MgO) is an important component in heat-assisted magnetic recording (HAMR) media, serving as an excellent seed layer for perpendicular orientation of FePt grains. However, it is difficult to detect the in-plane magnetic grains caused by the MgO boundaries. This work uses micromagnetic simulation to study the detection of longitudinally magnetized grains in FePt-based HAMR media using a novel 45° magnetoresistive read head design. By leveraging the reduced in-plane anisotropy of FePt grains and the magnetostatic field generated by adjacent tracks, an asymmetric magnetization distribution is induced along the cross-track direction. This asymmetry facilitates the detection of in-plane magnetization components using playback signals obtained from micromagnetic simulations. The method effectively identifies noise sources, thus providing a cost-efficient alternative to other experimental techniques.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"16 ","pages":"1-4"},"PeriodicalIF":1.1,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144177414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Permeability Magnetic Composites With Cement, Asphalt, and Epoxy Binders for Enhanced Performance Across Diverse Applications 高磁导率磁性复合材料与水泥,沥青和环氧粘合剂在不同的应用中增强性能
IF 1.1 4区 物理与天体物理
IEEE Magnetics Letters Pub Date : 2025-04-28 DOI: 10.1109/LMAG.2025.3564881
Ibrahim Ellithy;Mauricio Esguerra;Rewanth Radhakrishnan
{"title":"High-Permeability Magnetic Composites With Cement, Asphalt, and Epoxy Binders for Enhanced Performance Across Diverse Applications","authors":"Ibrahim Ellithy;Mauricio Esguerra;Rewanth Radhakrishnan","doi":"10.1109/LMAG.2025.3564881","DOIUrl":"https://doi.org/10.1109/LMAG.2025.3564881","url":null,"abstract":"As the global demand for energy transition and transport decarbonization intensifies, the development of advanced magnetizable materials becomes crucial for supporting large-scale applications. This study presents the optimization of MAGMENT composites, which are produced using recycled ferrite aggregates combined with binders, such as cement, asphalt, or epoxy. These composites are engineered to achieve high magnetic permeability and low core losses, key characteristics for efficient energy systems. Our results demonstrate that by fine-tuning the aggregate size and volume fraction, permeability can be significantly enhanced, with volume fractions above 65% showing the most promise. Although cement workability imposes a 73% limit, the performance of these composites still surpasses industry benchmarks, notably the KH-HT 60µ from KEDA, by refining the particle size distribution. Adjusting the nominal maximum aggregate size from 4.5 to 19 mm changes permeability from 40 to 180. The superior magnetic performance of the MC60 grade, particularly its minimal core losses, underscores its potential as a leading material in the market. These advancements are for applications in wireless charging, both static and dynamic, and in high-power transmission systems, addressing critical needs in sustainable transport and energy infrastructure. The use of recycled materials further aligns with the global push for environmentally responsible technologies.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"16 ","pages":"1-5"},"PeriodicalIF":1.1,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature Dependence of Magnetization Reversal and Harmonic Spectrum in Low Curie Temperature Amorphous Microwires 低居里温度非晶微细线磁化反转和谐波谱的温度依赖性
IF 1.1 4区 物理与天体物理
IEEE Magnetics Letters Pub Date : 2025-04-24 DOI: 10.1109/LMAG.2025.3564147
Adrian Acuna;Larissa Panina;Nikolay Yudanov
{"title":"Temperature Dependence of Magnetization Reversal and Harmonic Spectrum in Low Curie Temperature Amorphous Microwires","authors":"Adrian Acuna;Larissa Panina;Nikolay Yudanov","doi":"10.1109/LMAG.2025.3564147","DOIUrl":"https://doi.org/10.1109/LMAG.2025.3564147","url":null,"abstract":"The present study focuses on the investigation of the magnetization reversal process in amorphous microwires of the composition Co<sub>64.82</sub>Fe<sub>3.9</sub>B<sub>10.2</sub>Si<sub>12</sub>Cr<sub>9</sub>Mo<sub>0.08</sub>, which possesses a low Curie temperature <inline-formula><tex-math>${{T}_c}$</tex-math></inline-formula> of 61 °<inline-formula><tex-math>$mathrm{C}$</tex-math></inline-formula>. The microwire retains a nearly rectangular hysteresis loop, an axial anisotropy, and a positive magnetostriction up to <inline-formula><tex-math>${{T}_c}$</tex-math></inline-formula>. The coercivity decreases with temperature, following the decrease in the saturation magnetization <inline-formula><tex-math>${{M}_s}$</tex-math></inline-formula>, but it has a different dependence on <inline-formula><tex-math>${{M}_s}$</tex-math></inline-formula> far from and near <inline-formula><tex-math>$ {{T}_c}$</tex-math></inline-formula>, which suggests different mechanisms of magnetostriction in these temperature intervals. Furthermore, the harmonic spectrum of the voltage induced during remagnetization is also temperature sensitive. The area under the voltage pulse is directly proportional to <inline-formula><tex-math>${{M}_s}$</tex-math></inline-formula>, resulting in a comparable dependence of the harmonic amplitudes. In the context of potential applications in wireless temperature sensors, measuring the harmonic spectrum offers distinct advantages based on lock-in techniques. In addition, the temperature range over which the harmonic spectrum varies most is extended by using two (or potentially few) microwires with different <inline-formula><tex-math>${{T}_c}$</tex-math></inline-formula>. The change in <inline-formula><tex-math>${{T}_c}$</tex-math></inline-formula> from 61 °<inline-formula><tex-math>$mathrm{C}$</tex-math></inline-formula> to 57 °<inline-formula><tex-math>$mathrm{C}$</tex-math></inline-formula> is achieved by current annealing of the same microwire, which helps to extend the temperature-sensitive range of the two microwire harmonic responses between 40 °<inline-formula><tex-math>$mathrm{C}$</tex-math></inline-formula> and 61 °<inline-formula><tex-math>$mathrm{C}$</tex-math></inline-formula>.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"16 ","pages":"1-5"},"PeriodicalIF":1.1,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144123348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of Structural and Magnetic Properties of Antiferromagnetic Cr2MnGe Heusler Alloy 反铁磁Cr2MnGe Heusler合金的结构和磁性能研究
IF 1.1 4区 物理与天体物理
IEEE Magnetics Letters Pub Date : 2025-04-14 DOI: 10.1109/LMAG.2025.3560867
Karthik G;Shipra Das;T. R. Naveen Kumar;K Ravichandran
{"title":"Study of Structural and Magnetic Properties of Antiferromagnetic Cr2MnGe Heusler Alloy","authors":"Karthik G;Shipra Das;T. R. Naveen Kumar;K Ravichandran","doi":"10.1109/LMAG.2025.3560867","DOIUrl":"https://doi.org/10.1109/LMAG.2025.3560867","url":null,"abstract":"Engineered Heusler alloys have potential applications in spintronic devices owing to their fascinating properties. Therefore, we synthesized a ternary Cr<sub>2</sub>MnGe Heusler alloy using a simple solid-state reaction. Rietveld refinement of the X-ray diffraction data confirmed the presence of a cubic Fd-3m structure, specifically the B32a disorder Heusler phase with a space group number of 227. The microstructure and chemical composition of the Cr<sub>2</sub>MnGe sample confirmed agglomeration and adherence to the nominal composition of the Heusler alloy. Furthermore, the Cr<sub>2</sub>MnGe sample exhibits antiferromagnetic behavior with ferromagnetic clusters due to the site swapping of Cr–Mn and Cr–Ge, which contributes to a magnetic signal in the zero-field-cooled and field-cooled measurements. These findings highlight the potential of Cr<sub>2</sub>MnGe for application in magnetic tunnel junctions and spin valves, contributing to advancements in spintronic technologies.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"16 ","pages":"1-4"},"PeriodicalIF":1.1,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144232180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Features and Peculiarities of Gate-Voltage Modulation of Spin-Orbit Interaction in FeB Nanomagnets: Insights Into the Physical Origins of the Voltage-Controlled Magnetic Anisotropy Effect FeB纳米磁体中自旋轨道相互作用的栅极电压调制的特征和特性:电压控制磁各向异性效应物理根源的见解
IF 1.1 4区 物理与天体物理
IEEE Magnetics Letters Pub Date : 2025-04-14 DOI: 10.1109/LMAG.2025.3560858
Vadym Zayets
{"title":"Features and Peculiarities of Gate-Voltage Modulation of Spin-Orbit Interaction in FeB Nanomagnets: Insights Into the Physical Origins of the Voltage-Controlled Magnetic Anisotropy Effect","authors":"Vadym Zayets","doi":"10.1109/LMAG.2025.3560858","DOIUrl":"https://doi.org/10.1109/LMAG.2025.3560858","url":null,"abstract":"This letter systematically investigates the fundamental mechanisms driving the voltage-controlled magnetic anisotropy (VCMA) effect, with a focus on the dependencies of the anisotropy field and the strength of spin-orbit (SO) interaction on gate voltage, measured in Ta/FeB/MgO nanomagnets. Our findings reveal an intriguing opposite polarity in the gate-voltage dependencies of the anisotropy field and the coefficient of SO interaction across all studied nanomagnets. This discovery challenges the prevailing assumption that SO interaction is the primary contributor to the VCMA effect, instead suggesting that gate-voltage modulation of magnetization is likely the dominant factor, as its polarity aligns with the observed modulation of anisotropy. The modulation of magnetic anisotropy is governed by two major contributions with opposite polarities, which tend to counterbalance each other, reducing the overall VCMA effect. Optimizing this balance could significantly enhance the VCMA effect, offering a promising avenue for broadening its applications. In addition, our measurements confirm that gate voltage does not modulate the in-plane component of spin accumulation, providing further insights into the underlying mechanisms of the VCMA effect.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"16 ","pages":"1-4"},"PeriodicalIF":1.1,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144108338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Size Dependence of the Read Voltage and Electrical Diameter of STT MRAM Cells STT MRAM电池读电压和电径的尺寸依赖性
IF 1.1 4区 物理与天体物理
IEEE Magnetics Letters Pub Date : 2025-04-14 DOI: 10.1109/LMAG.2025.3560889
Goran Mihajlović;Wonjoon Jung;Noraica Dávila;Jeffrey Lille;Michael Tran;Jordan A. Katine;Michael K. Grobis
{"title":"Size Dependence of the Read Voltage and Electrical Diameter of STT MRAM Cells","authors":"Goran Mihajlović;Wonjoon Jung;Noraica Dávila;Jeffrey Lille;Michael Tran;Jordan A. Katine;Michael K. Grobis","doi":"10.1109/LMAG.2025.3560889","DOIUrl":"https://doi.org/10.1109/LMAG.2025.3560889","url":null,"abstract":"We present an experimental study of the size-dependent tunneling magnetoresistance ratio (TMR) and voltage read signal in perpendicular spin transfer torque magnetoresistive random-access (MRAM) memory cells, which shows that the maximum read signal is mostly independent of the size, while TMR decreases with decreasing size. Our analysis shows that this is due to a size-dependent parasitic resistance specific to the nanofabrication process and that the intrinsic <inline-formula><tex-math>$Delta text{RA}$</tex-math></inline-formula> of the cells is size-independent. As a consequence, we show that the electrical diameter of an MRAM cell can be reliably extracted down to sub-20 nm assuming that <inline-formula><tex-math>$Delta text{RA}$</tex-math></inline-formula> does not depend on the cell size.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"16 ","pages":"1-5"},"PeriodicalIF":1.1,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144072775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast Acquisition of Sensor Array Geometry of Whole-Head Magnetoencephalograph Systems Using a Neural Network 基于神经网络的全头脑磁仪传感器阵列几何结构快速采集
IF 1.1 4区 物理与天体物理
IEEE Magnetics Letters Pub Date : 2025-04-14 DOI: 10.1109/LMAG.2025.3560886
Yoshiaki Adachi;Daisuke Oyama;Gen Uehara
{"title":"Fast Acquisition of Sensor Array Geometry of Whole-Head Magnetoencephalograph Systems Using a Neural Network","authors":"Yoshiaki Adachi;Daisuke Oyama;Gen Uehara","doi":"10.1109/LMAG.2025.3560886","DOIUrl":"https://doi.org/10.1109/LMAG.2025.3560886","url":null,"abstract":"Acquiring position, orientation, and sensitivity of magnetometers in a helmet-shaped sensor array is crucial for accurate current source reconstruction in magnetoencephalography. To determine these parameters for each magnetometer, we utilize a spherical calibration coil array. In our previous study, the position and orientation of each magnetometer were determined as the solution of an inverse problem through a numerical search that minimized the difference between the theoretical magnetic field signals from each coil and the measured signals detected by the magnetometer. In this study, we applied a deep neural network to estimate the position and orientation of each magnetometer in the helmet-shaped sensor array without solving the inverse problem. A total of 223 million pairs of a given magnetometer's five parameters (<italic>x</i>, <italic>y</i>, <italic>z</i>, <italic>θ</i>, and <italic>ϕ</i>) and the corresponding theoretical magnetic field signals from the coils were used to train the neural network. The training process required approximately 53 h using a commercially available GPU-equipped computer. The trained neural network was then applied to acquire the sensor geometry from magnetic field data obtained during a conventional calibration procedure for a 160-channel whole-head magnetoencephalograph system using a spherical calibration coil array. The position and orientation of each magnetometer estimated by this method deviated by an average of 0.65 mm and 0.51°, respectively, from those obtained via the conventional inverse problem approach. The acquisition of the geometry for all 160 magnetometers required less than 8 ms. With such high-speed acquisition, this approach opens possibilities for future applications in acquiring positional information of wearable sensor arrays whose structures change in real time.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"16 ","pages":"1-5"},"PeriodicalIF":1.1,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10964712","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144179108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信