基于物理的磁隧道结电路模型

IF 1.1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Steven Louis;Hannah Bradley;Artem Litvinenko;Vasyl Tyberkevych
{"title":"基于物理的磁隧道结电路模型","authors":"Steven Louis;Hannah Bradley;Artem Litvinenko;Vasyl Tyberkevych","doi":"10.1109/LMAG.2025.3577475","DOIUrl":null,"url":null,"abstract":"This work presents an equivalent circuit model for magnetic tunnel junctions (MTJs) that accurately reproduces their magnetization dynamics and electrical behavior within the macrospin approximation. The model is validated through direct numerical simulations of the Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation, encompassing ferromagnetic resonance, field- and spin-torque-induced switching and spin-torque-induced oscillations. Simulation results exhibit excellent agreement between the equivalent circuit model and the LLGS-based simulations, confirming the model accuracy and utility for efficient circuit-level analysis of MTJs. The capability of handling time-dependent magnetic fields and voltage-driven excitations renders the model applicable to diverse areas, including neuromorphic computing, microwave signal processing, and spintronic memory technologies. By providing a computationally efficient yet physically rigorous circuit representation, this work facilitates seamless integration of MTJs into complex electronic systems, thereby accelerating the advancement of novel spintronic circuit architectures.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"16 ","pages":"1-5"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Physics-Based Circuit Model for Magnetic Tunnel Junctions\",\"authors\":\"Steven Louis;Hannah Bradley;Artem Litvinenko;Vasyl Tyberkevych\",\"doi\":\"10.1109/LMAG.2025.3577475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents an equivalent circuit model for magnetic tunnel junctions (MTJs) that accurately reproduces their magnetization dynamics and electrical behavior within the macrospin approximation. The model is validated through direct numerical simulations of the Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation, encompassing ferromagnetic resonance, field- and spin-torque-induced switching and spin-torque-induced oscillations. Simulation results exhibit excellent agreement between the equivalent circuit model and the LLGS-based simulations, confirming the model accuracy and utility for efficient circuit-level analysis of MTJs. The capability of handling time-dependent magnetic fields and voltage-driven excitations renders the model applicable to diverse areas, including neuromorphic computing, microwave signal processing, and spintronic memory technologies. By providing a computationally efficient yet physically rigorous circuit representation, this work facilitates seamless integration of MTJs into complex electronic systems, thereby accelerating the advancement of novel spintronic circuit architectures.\",\"PeriodicalId\":13040,\"journal\":{\"name\":\"IEEE Magnetics Letters\",\"volume\":\"16 \",\"pages\":\"1-5\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Magnetics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11027574/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Magnetics Letters","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/11027574/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了磁隧道结(MTJs)的等效电路模型,该模型在宏自旋近似下精确地再现了它们的磁化动力学和电学行为。该模型通过Landau-Lifshitz-Gilbert-Slonczewski (LLGS)方程的直接数值模拟进行了验证,该方程包括铁磁共振、场和自旋-扭矩诱导开关以及自旋-扭矩诱导振荡。仿真结果表明等效电路模型与基于llgs的仿真结果非常吻合,验证了模型的准确性和对mtj电路级分析的有效性。处理随时间变化的磁场和电压驱动激励的能力使该模型适用于各种领域,包括神经形态计算、微波信号处理和自旋电子存储技术。通过提供计算效率高但物理上严格的电路表示,这项工作促进了mtj与复杂电子系统的无缝集成,从而加速了新型自旋电子电路架构的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Physics-Based Circuit Model for Magnetic Tunnel Junctions
This work presents an equivalent circuit model for magnetic tunnel junctions (MTJs) that accurately reproduces their magnetization dynamics and electrical behavior within the macrospin approximation. The model is validated through direct numerical simulations of the Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation, encompassing ferromagnetic resonance, field- and spin-torque-induced switching and spin-torque-induced oscillations. Simulation results exhibit excellent agreement between the equivalent circuit model and the LLGS-based simulations, confirming the model accuracy and utility for efficient circuit-level analysis of MTJs. The capability of handling time-dependent magnetic fields and voltage-driven excitations renders the model applicable to diverse areas, including neuromorphic computing, microwave signal processing, and spintronic memory technologies. By providing a computationally efficient yet physically rigorous circuit representation, this work facilitates seamless integration of MTJs into complex electronic systems, thereby accelerating the advancement of novel spintronic circuit architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Magnetics Letters
IEEE Magnetics Letters PHYSICS, APPLIED-
CiteScore
2.40
自引率
0.00%
发文量
37
期刊介绍: IEEE Magnetics Letters is a peer-reviewed, archival journal covering the physics and engineering of magnetism, magnetic materials, applied magnetics, design and application of magnetic devices, bio-magnetics, magneto-electronics, and spin electronics. IEEE Magnetics Letters publishes short, scholarly articles of substantial current interest. IEEE Magnetics Letters is a hybrid Open Access (OA) journal. For a fee, authors have the option making their articles freely available to all, including non-subscribers. OA articles are identified as Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信