{"title":"High-Density 1T1D1SOT-MRAM With Multimode Ultrahigh-Speed Magnetization Switching","authors":"Hao Zhang;Di Wang;Long Liu;Xuefeng Zhao;Huai Lin;Changqing Xie","doi":"10.1109/LMAG.2023.3293407","DOIUrl":null,"url":null,"abstract":"In this letter, we present a 1T1D1M-based (one transistor, one diode, and one magnetic tunnel junction) spin-orbit torque, magnetic random-access memory (SOT-MRAM) with multimode magnetization switching for high-density memory, ultrahigh-speed writing, and energy-efficient on-chip memory application. The conventional spin-transfer torque (STT)-MRAM or SOT-MRAM is limited by the unipolar (or bipolar) switching property and demands the utilization of a common channel with bidirectional write current, which not only brings about source degradation of the access transistor but also increases the energy consumption in the write operation. By introducing a Schottky diode, the 1T1D1SOT-MRAM cell based on ultrafast switching of multiple modes outperforms conventional MRAMs in terms of decoupling of current channels in different directions and high-density integration. Simulation results show that the MRAM achieves 82% and 100% reduction in bit-cell area compared with STT-MRAM and SOT-MRAM, respectively, and ∼3.3× improvement in write energy consumption in comparison with STT-MRAM.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-5"},"PeriodicalIF":1.1000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Magnetics Letters","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10175629/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this letter, we present a 1T1D1M-based (one transistor, one diode, and one magnetic tunnel junction) spin-orbit torque, magnetic random-access memory (SOT-MRAM) with multimode magnetization switching for high-density memory, ultrahigh-speed writing, and energy-efficient on-chip memory application. The conventional spin-transfer torque (STT)-MRAM or SOT-MRAM is limited by the unipolar (or bipolar) switching property and demands the utilization of a common channel with bidirectional write current, which not only brings about source degradation of the access transistor but also increases the energy consumption in the write operation. By introducing a Schottky diode, the 1T1D1SOT-MRAM cell based on ultrafast switching of multiple modes outperforms conventional MRAMs in terms of decoupling of current channels in different directions and high-density integration. Simulation results show that the MRAM achieves 82% and 100% reduction in bit-cell area compared with STT-MRAM and SOT-MRAM, respectively, and ∼3.3× improvement in write energy consumption in comparison with STT-MRAM.
期刊介绍:
IEEE Magnetics Letters is a peer-reviewed, archival journal covering the physics and engineering of magnetism, magnetic materials, applied magnetics, design and application of magnetic devices, bio-magnetics, magneto-electronics, and spin electronics. IEEE Magnetics Letters publishes short, scholarly articles of substantial current interest.
IEEE Magnetics Letters is a hybrid Open Access (OA) journal. For a fee, authors have the option making their articles freely available to all, including non-subscribers. OA articles are identified as Open Access.