{"title":"中等静磁场对对虾腹神经纤维膜电位的影响","authors":"Siyuan Liu;Shupeng Liu;Yongyong Gong;Jinbo Chen;Hengyu Li;Zhizheng Wu;Ze Cui;Mei Liu;Jingtao Lei;Tao Wang","doi":"10.1109/LMAG.2023.3293391","DOIUrl":null,"url":null,"abstract":"The effects of uniform and static moderate magnetic fields (0–400 mT) on the membrane potential of nerve fibers in \n<italic>Metapenaeus ensis</i>\n shrimps were investigated. The results showed that the magnetic field caused an increase in membrane potential, eventually reaching a static state, and that effects of short-term exposure were largely reversible. A nonlinear relationship between the percentage change in membrane potential (\n<italic>V%</i>\n) and magnetic field induction was observed, where \n<italic>V%</i>\n increased rapidly below an inflection point (around 200 mT) and slowed down thereafter. Hypotheses suggest that ion channels in the membrane have varying sensitivities to magnetic fields and presented the distribution of ion channel activation thresholds within the 0–400 mT range. The identification of the inflection point holds great practical value in the fields of magnetic field therapy, exposure limits, and magnetic shielding design.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-5"},"PeriodicalIF":1.1000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Moderate Static Magnetic Field on Membrane Potential of Abdominal Nerve Fiber in Metapenaeus Ensis\",\"authors\":\"Siyuan Liu;Shupeng Liu;Yongyong Gong;Jinbo Chen;Hengyu Li;Zhizheng Wu;Ze Cui;Mei Liu;Jingtao Lei;Tao Wang\",\"doi\":\"10.1109/LMAG.2023.3293391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of uniform and static moderate magnetic fields (0–400 mT) on the membrane potential of nerve fibers in \\n<italic>Metapenaeus ensis</i>\\n shrimps were investigated. The results showed that the magnetic field caused an increase in membrane potential, eventually reaching a static state, and that effects of short-term exposure were largely reversible. A nonlinear relationship between the percentage change in membrane potential (\\n<italic>V%</i>\\n) and magnetic field induction was observed, where \\n<italic>V%</i>\\n increased rapidly below an inflection point (around 200 mT) and slowed down thereafter. Hypotheses suggest that ion channels in the membrane have varying sensitivities to magnetic fields and presented the distribution of ion channel activation thresholds within the 0–400 mT range. The identification of the inflection point holds great practical value in the fields of magnetic field therapy, exposure limits, and magnetic shielding design.\",\"PeriodicalId\":13040,\"journal\":{\"name\":\"IEEE Magnetics Letters\",\"volume\":\"14 \",\"pages\":\"1-5\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Magnetics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10175550/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Magnetics Letters","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10175550/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Effect of Moderate Static Magnetic Field on Membrane Potential of Abdominal Nerve Fiber in Metapenaeus Ensis
The effects of uniform and static moderate magnetic fields (0–400 mT) on the membrane potential of nerve fibers in
Metapenaeus ensis
shrimps were investigated. The results showed that the magnetic field caused an increase in membrane potential, eventually reaching a static state, and that effects of short-term exposure were largely reversible. A nonlinear relationship between the percentage change in membrane potential (
V%
) and magnetic field induction was observed, where
V%
increased rapidly below an inflection point (around 200 mT) and slowed down thereafter. Hypotheses suggest that ion channels in the membrane have varying sensitivities to magnetic fields and presented the distribution of ion channel activation thresholds within the 0–400 mT range. The identification of the inflection point holds great practical value in the fields of magnetic field therapy, exposure limits, and magnetic shielding design.
期刊介绍:
IEEE Magnetics Letters is a peer-reviewed, archival journal covering the physics and engineering of magnetism, magnetic materials, applied magnetics, design and application of magnetic devices, bio-magnetics, magneto-electronics, and spin electronics. IEEE Magnetics Letters publishes short, scholarly articles of substantial current interest.
IEEE Magnetics Letters is a hybrid Open Access (OA) journal. For a fee, authors have the option making their articles freely available to all, including non-subscribers. OA articles are identified as Open Access.