{"title":"Foreword.","authors":"Michael J Aminoff, François Boller, Dick F Swaab","doi":"10.1016/B978-0-443-19102-2.09999-3","DOIUrl":"https://doi.org/10.1016/B978-0-443-19102-2.09999-3","url":null,"abstract":"","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"210 ","pages":"ix"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143729808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniele Mattei, Dilansu Guneykaya, Bilge Ugursu, Alice Buonfiglioli
{"title":"From womb to world: The interplay between maternal immune activation, neuroglia, and neurodevelopment.","authors":"Daniele Mattei, Dilansu Guneykaya, Bilge Ugursu, Alice Buonfiglioli","doi":"10.1016/B978-0-443-19102-2.00028-4","DOIUrl":"https://doi.org/10.1016/B978-0-443-19102-2.00028-4","url":null,"abstract":"<p><p>This chapter introduces and discusses maternal immune activation (MIA) as a contributing factor in increasing the risk of neurodevelopmental disorders, particularly in relation to its interactions with neuroglia. Here we first provide an overview of the neuroglia-astroglia, oligodendroglia, microglia, and radial glial cells-and their important role during early brain development and in adulthood. We then present and discuss MIA, followed by a critical overview of inflammatory molecules and temporal stages associated to maternal inflammation during pregnancy. We provide an overview of animal and human models used to mimic and study MIA. Furthermore, we review the possible interaction between MIA and neuroglia, focusing on the current advances in both modeling and therapeutics. Additionally, we discuss and provide preliminary and interesting insights into the most recent pandemic, COVID-19, and how the infection may be associated to MIA and increased risk for neurodevelopmental disorders. Finally, we provide a critical overview of challenges and future opportunities to study how MIA may contribute to higher risk of developing neurodevelopmental disorders.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"210 ","pages":"269-285"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143729813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neuroglia in mood disorders.","authors":"Gijsje J L J Snijders, Frederieke A J Gigase","doi":"10.1016/B978-0-443-19102-2.00010-7","DOIUrl":"https://doi.org/10.1016/B978-0-443-19102-2.00010-7","url":null,"abstract":"<p><p>Multiple lines of evidence indicate that mood disorders, such as major depressive and bipolar disorder, are associated with abnormalities in neuroglial cells. This chapter discusses the existing literature investigating the potential role of astrocytes, oligodendrocytes, and microglia in mood pathology. We will describe evidence from in vivo imaging, postmortem, animal models based on (stress) paradigms that mimic depressive-like behavior, and biomarker studies in blood and cerebrospinal fluid in patients with mood disorders. The effect of medication used in the treatment of mood disorders, such as antidepressants and lithium, on glial function is discussed. Lastly, we highlight the most relevant findings about potential deficiencies in glia-glia crosstalk in mood disorders. Overall, decreased astrocyte and oligodendrocyte density and expression and microglial changes in homeostatic functions have frequently been put forward in MDD pathology. Studies of BD report similar findings to some extent; however, the evidence is less well established. Together, these findings are suggestive of reduced glial cell function leading to potential white matter abnormalities, glutamate dysregulation, disrupted neuronal functioning, and neurotransmission. However, more research is required to better understand the exact mechanisms underlying glial cell contributions to mood disorder development.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"210 ","pages":"287-302"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143729857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unraveling the complexity of microglial responses in traumatic brain and spinal cord injury.","authors":"Rebecca J Henry, David J Loane","doi":"10.1016/B978-0-443-19102-2.00015-6","DOIUrl":"https://doi.org/10.1016/B978-0-443-19102-2.00015-6","url":null,"abstract":"<p><p>Microglia, the resident innate immune cells of the central nervous system (CNS), play an important role in neuroimmune signaling, neuroprotection, and neuroinflammation. In the healthy CNS, microglia adopt a surveillant and antiinflammatory phenotype characterized by a ramified scanning morphology that maintains CNS homeostasis. In response to acquired insults, such as traumatic brain injury (TBI) or spinal cord injury (SCI), microglia undergo a dramatic morphologic and functional switch to that of a reactive state. This microglial switch is initially protective and supports the return of the injured tissue to a physiologic homeostatic state. However, there is now a significant body of evidence that both TBI and SCI can result in a chronic state of microglial activation, which contributes to neurodegeneration and impairments in long-term neurologic outcomes in humans and animal models. In this review, we discuss the complex role of microglia in the pathophysiology of TBI and SCI, and recent advancements in knowledge of microglial phenotypic states in the injured CNS. Furthermore, we highlight novel therapeutic strategies targeting chronic microglial responses in experimental models and discuss how they may ultimately be translated to the clinic for human brain and SCI.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"210 ","pages":"113-132"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143729887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neuroglia and extracellular matrix molecules.","authors":"Egor Dzyubenko, Dirk M Hermann","doi":"10.1016/B978-0-443-19104-6.00010-3","DOIUrl":"https://doi.org/10.1016/B978-0-443-19104-6.00010-3","url":null,"abstract":"<p><p>This chapter provides a comprehensive overview of the roles of astrocytes, microglia, and the extracellular matrix (ECM) in regulating neuroplasticity and maintaining brain homeostasis. Astrocytes provide essential metabolic support to neurons, regulate synapse development, support neuroplasticity mechanisms, and modulate neurotransmission. Microglia, the resident immune cells of the brain, play a critical role in neuroinflammatory responses and homeostatic brain regulation by modulating synapse formation and pruning. The extracellular space (ECS) mediates intercellular interactions, provides a highly regulated environment for intercellular communication, and is filled with ECM molecules. Proteoglycans and polysaccharides of the ECM play a vital role not only in brain development but also in brain function throughout life. In the injured brain, neuroplasticity and regeneration can be bidirectionally regulated as a result of the interplay between ECM, astrocytes, and microglia. The modulation of synaptic strength, structural remodeling, and modification of intrinsic neuronal properties are among the central mechanisms that contribute to neuronal plasticity in health and disease. We believe that the understanding of ECM-glia interactions and their role in neuroplasticity regulation is key to the development of novel therapeutic strategies in neurologic disorders.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"209 ","pages":"197-211"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143691721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physiology of neuroglia of the central nervous system.","authors":"Alexei Verkhratsky, Alexey Semyanov","doi":"10.1016/B978-0-443-19104-6.00005-X","DOIUrl":"https://doi.org/10.1016/B978-0-443-19104-6.00005-X","url":null,"abstract":"<p><p>Neuroglia of the central nervous system (CNS) are a diverse and highly heterogeneous population of cells of ectodermal, neuroepithelial origin (macroglia, that includes astroglia and oligodendroglia) and mesodermal, myeloid origin (microglia). Neuroglia are primary homeostatic cells of the CNS, responsible for the support, defense, and protection of the nervous tissue. The extended class of astroglia (which includes numerous parenchymal astrocytes, such as protoplasmic, fibrous, velate, marginal, etc., radial astrocytes such as Bergmann glia, Muller glia, etc., and ependymoglia lining the walls of brain ventricles and central canal of the spinal cord) is primarily responsible for overall homeostasis of the nervous tissue. Astroglial cells control homeostasis of ions, neurotransmitters, hormones, metabolites, and are responsible for neuroprotection and defense of the CNS. Oligodendroglia provide for myelination of axons, hence supporting and sustaining CNS connectome. Microglia are tissue macrophages adapted to the CNS environment which contribute to the host of physiologic functions including regulation of synaptic connectivity through synaptic pruning, regulation of neurogenesis, and even modifying neuronal excitability. Neuroglial cells express numerous receptors, transporters, and channels that allow neuroglia to perceive and follow neuronal activity. Activation of these receptors triggers intracellular ionic signals that govern various homeostatic cascades underlying glial supportive and defensive capabilities. Ionic signaling therefore represents the substrate of glial excitability.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"209 ","pages":"69-91"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143691893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Circadian pattern in restless legs syndrome.","authors":"Ambra Stefani","doi":"10.1016/B978-0-323-90918-1.00009-5","DOIUrl":"https://doi.org/10.1016/B978-0-323-90918-1.00009-5","url":null,"abstract":"<p><p>This chapter provides an overview of circadian pattern in restless legs syndrome (RLS). Circadian variation of symptoms is a known feature of RLS. According to one of the five essential criteria for RLS diagnosis, symptoms \"only occur or are worse in the evening or at night than during the day.\" RLS symptoms are most pronounced in the evening and at night, with a relative improvement in the late sleep period or in the early morning. This unique feature helps differentiating RLS from other movement disorders. Although differentiating the circadian pattern of RLS manifestations from the worsening of RLS symptoms at rest is not always easy, the independency of these two features has been demonstrated in several studies. Mechanisms implicated in circadian variations of RLS include dopamine, iron, opioids, and genetic factors, which all interact with each other. Further insights on circadian fluctuations in patients with RLS derive from clinical studies reporting circadian variations in sensory processing and spinal excitability, as well as from studies showing circadian variations in cortical excitability, default mode network, and cognition in patients with RLS.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"206 ","pages":"105-111"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Renata Cristina Mendes Ferreira, Francieli S Ruiz, Marco Túlio de Mello
{"title":"Human sleep and immunity: The role of circadian patterns.","authors":"Renata Cristina Mendes Ferreira, Francieli S Ruiz, Marco Túlio de Mello","doi":"10.1016/B978-0-323-90918-1.00003-4","DOIUrl":"https://doi.org/10.1016/B978-0-323-90918-1.00003-4","url":null,"abstract":"<p><p>It is well established that sleep promotes health and welfare. Literature data suggests that sleep is a recurrent resting state that performs multiple biological functions, such as memory consolidation and regulation of glucose, lipid metabolism, energy metabolism, eating behavior, and blood pressure, besides, regulating the immune system. These immunological functions depend on regular sleep and circadian rhythms, as both impact the magnitude of immune responses. Circadian rhythm is the 24-h internal clock in our brain that regulates cycles of alertness and sleepiness by responding to light changes in our environment. It encompasses physical and behavioral daily oscillations. Sleep deprivation and circadian misalignment affect immunity, and both have been related to adverse health effects and chronic diseases. Studies have shown that individuals with regular and consistent sleep patterns have a more effective immune response. Thus, understanding how sleep disturbance will affect the immune response is vital in developing interventions to prevent the health burden of irregular sleep patterns and circadian misalignment, favoring a homeostatic immune defense to microbial or inflammatory insults. Therefore, the scope of this chapter is to explore evidence that regular circadian rhythms and sleep patterns are needed for optimal resistance to infectious challenges.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"206 ","pages":"93-103"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143046319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emerging ethical issues in patients with disorders of consciousness: A clinical guide.","authors":"James L Bernat, Joseph J Fins","doi":"10.1016/B978-0-443-13408-1.00001-4","DOIUrl":"https://doi.org/10.1016/B978-0-443-13408-1.00001-4","url":null,"abstract":"<p><p>Clinicians who manage patients with disorders of consciousness (DoC) commonly encounter challenging ethical issues. Consciousness disorders include the vegetative state, the minimally conscious state, and covert consciousness resulting from cognitive-motor dissociation. The practice landscape of ethical issues encompasses making the correct diagnosis; making and communicating an accurate prognosis despite irreducible uncertainty; conducting effective shared decision-making with a lawful surrogate decision-maker to deliver goal-concordant care; providing optimal medical, rehabilitative, and palliative care across the spectrum of care sites: acute inpatient, neurorehabilitative, chronic, and palliative; respecting the human rights of and advocating for DoC patient, an historically under-served population and, when appropriate, properly participating in decisions to withhold or withdraw life-sustaining therapy. Research and translational issues in DoC patients include the challenges posed by emerging diagnostics and therapeutics and their prudential integration into clinical practice in the service of patients and their families. Our conceptual analysis of these ethical issues and our practical advice to address them comprise the subject material of this chapter.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"207 ","pages":"217-236"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143476453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hemispheric asymmetries in the control of upper limb movements.","authors":"Luigi Trojano","doi":"10.1016/B978-0-443-15646-5.00024-5","DOIUrl":"https://doi.org/10.1016/B978-0-443-15646-5.00024-5","url":null,"abstract":"<p><p>This chapter deals with the unique human abilities of using tools, imitating others' gestures, drawing, and building complex items. Herein, after a brief overview of clinical manifestations and assessment of disorders of tool use and imitation (upper limb apraxia) and of the impairments in drawing and assembling multipart objects (constructional apraxia), brain asymmetries are discussed mainly starting from the neuropsychologic studies on patients with focal brain lesions, although both upper limb apraxia and constructional apraxia are often observed during the course of neurodegenerative diseases. Although no room is allowed here for a full discussion of brain-behavior relationships, relevant functional neuroimaging findings in healthy individuals are considered. The data presented in this chapter clearly demonstrate that tool use, gesture imitation, and \"formative\" activities (i.e., drawing and assembling) require the interplay of several brain areas and neural networks distributed over both hemispheres. Nonetheless, gesture processing exhibits a quite strong lateralization to the left hemisphere in typical right-handers. As regards \"formative\" activities, the neural networks in both hemispheres seem to provide complementary contributions, although the left inferior parietal lobule might play a specific role. The convergence of gesture processing and \"formative activities\" in the parietal lobes might be related to their considerable expansion in our species and could suggest that some shared basic, still unknown, computational processes allowed the development of these skills in modern humans.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"208 ","pages":"393-405"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143614402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}