{"title":"Sleep and circadian rhythms modeling: From hypothalamic regulatory networks to cortical dynamics and behavior.","authors":"Svetlana Postnova, Paula Sanz-Leon","doi":"10.1016/B978-0-323-90918-1.00013-7","DOIUrl":"https://doi.org/10.1016/B978-0-323-90918-1.00013-7","url":null,"abstract":"<p><p>Sleep and circadian rhythms are regulated by dynamic physiologic processes that operate across multiple spatial and temporal scales. These include, but are not limited to, genetic oscillators, clearance of waste products from the brain, dynamic interplay among brain regions, and propagation of local dynamics across the cortex. The combination of these processes, modulated by environmental cues, such as light-dark cycles and work schedules, represents a complex multiscale system that regulates sleep-wake cycles and brain dynamics. Physiology-based mathematical models have successfully explained the mechanisms underpinning dynamics at specific scales and are a useful tool to investigate interactions across multiple scales. They can help answer questions such as how do electroencephalographic (EEG) features relate to subthalamic neuron activity? Or how are local cortical dynamics regulated by the homeostatic and circadian mechanisms? In this chapter, we review two types of models that are well-positioned to consider such interactions. Part I of the chapter focuses on the subthalamic sleep regulatory networks and a model of arousal dynamics capable of predicting sleep, circadian rhythms, and cognitive outputs. Part II presents a model of corticothalamic circuits, capable of predicting spatial and temporal EEG features. We then discuss existing approaches and unsolved challenges in developing unified multiscale models.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"206 ","pages":"37-58"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143046570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Antonia Quera-Salva, Sarah Hartley, Karol Uscamaita
{"title":"Circadian rhythm disorders in the blind.","authors":"Maria Antonia Quera-Salva, Sarah Hartley, Karol Uscamaita","doi":"10.1016/B978-0-323-90918-1.00007-1","DOIUrl":"https://doi.org/10.1016/B978-0-323-90918-1.00007-1","url":null,"abstract":"<p><p>Non-24-h sleep-wake disorder in blind patients without light perception is an orphan circadian rhythm sleep-wake disorder and is extremely rare in sighted people. Non-24-h sleep-wake disorder is characterized by insomnia and daytime sleepiness alternating with asymptomatic episodes. The frequency of symptomatic periods depends on the daily desynchronization of endogenous circadian pattern of each patient. Diagnosis requires anamnesis, a sleep diary, and actigraphy, if possible; in addition, repeated 24-h measures of circadian markers such as melatonin secretion are also required. Treatment consists of sleep hygiene, behavioral therapy, and melatonin/melatonin agonist administration. Melatonin treatment should start when the circadian rhythm of the patient is in phase with the solar cycle. Efficacy of treatment may be evident after weeks even months from the beginning. There is often a relapse when the medication is stopped.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"206 ","pages":"113-123"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143046128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advanced sleep phase syndrome: Role of genetics and aging.","authors":"Rosalia Silvestri, Biancamaria Guarnieri","doi":"10.1016/B978-0-323-90918-1.00005-8","DOIUrl":"https://doi.org/10.1016/B978-0-323-90918-1.00005-8","url":null,"abstract":"<p><p>Advanced sleep phase (ASP) is seldom brought to medical attention because many individuals easily adapt to their early chronotype, especially if it emerges before the age of 30 and is present in a first-degree relative. In this case, the disorder is considered familial (FASP) and is mostly discovered coincidentally in the presence of other sleep disorders, mainly obstructive sleep apnea syndrome (OSAS). The prevalence of FASP is currently estimated to be between 0.21% and 0.5%. Autosomal dominant mutations in circadian clock genes like PER2, CK1, PER3, CRY2, TIMELESS, and DEC2 have been linked to FASP, some with pleiotropic effects influencing other health aspects like migraine and depression. Early morning awakening is, instead, more common among older individuals, occurring in almost 4% of cases, without considering associated comorbidities. Advanced sleep-wake phase disorder (ASWPD) is characterized by a consistent and distressing anticipation of sleep-wake timing, affecting almost 1% of middle-aged individuals. On average, women have a shorter circadian period than men, making them more susceptible to ASWPD, albeit no significant gender discrepancies have been observed. Age-related alterations in circadian rhythms are exacerbated and compounded by neurodegenerative disorders, impacting the suprachiasmatic nucleus (SCN), sensitivity to light, and light responsiveness in those affected. Conflicting data has surfaced regarding the protective or detrimental effects of ASWPD in studies on aging, mild cognitive impairment (MCI), and diverse dementia conditions.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"206 ","pages":"61-70"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Foreword.","authors":"Michael J Aminoff, François Boller, Dick F Swaab","doi":"10.1016/B978-0-323-90918-1.09991-3","DOIUrl":"https://doi.org/10.1016/B978-0-323-90918-1.09991-3","url":null,"abstract":"","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"206 ","pages":"ix"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143046313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evoked potentials in patients with disorders of consciousness.","authors":"Christoph Leithner, Christian Endisch","doi":"10.1016/B978-0-443-13408-1.00002-6","DOIUrl":"https://doi.org/10.1016/B978-0-443-13408-1.00002-6","url":null,"abstract":"<p><p>Acute coma in the intensive care unit and persistent disorders of consciousness (DoC) in neuro-rehabilitation are frequent in patients with hypoxic-ischemic encephalopathy after cardiac arrest (CA), traumatic brain injury, intracranial hemorrhage, or ischemic stroke. Reliable prognostication of long-term neurologic outcomes cannot be made by clinical examination alone in the early phase for many patients, and thus, additional investigations are necessary. Evoked potentials provide inexpensive, real-time, high temporal resolution, bedside, quantifiable information on different sensory pathways into the brain including local and global cortical processing. Short-latency somatosensory evoked potentials can reliably predict poor neurologic long-term outcome in the early phase after CA and are recommended by guidelines as one investigation within an early multimodal assessment. Middle-latency and event-related or cognitive evoked potentials provide information on the integrity of more advanced cortical processing, some closely related to consciousness. This information can help to identify those comatose patients with a good prognosis in the acute phase and help to better understand their precise clinical state and the chances of further recovery in patients with persistent DoC in neuro-rehabilitation. Further studies are necessary to improve the applicability of research findings in the clinical sphere.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"207 ","pages":"147-164"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143476383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neuroscience of coma.","authors":"Abid Y Qureshi, Robert D Stevens","doi":"10.1016/B978-0-443-13408-1.00010-5","DOIUrl":"https://doi.org/10.1016/B978-0-443-13408-1.00010-5","url":null,"abstract":"<p><p>Coma and disorders of consciousness are frequently considered in terms of two linked anatomic-functional systems: the arousal system and the awareness system. The mesopontine tegmentum (namely the cuneiform/subcuneiform nuclei of the caudal midbrain and the pontis oralis nucleus of the rostral pons) and the monoamine nuclei generate signals of arousal. These signals are augmented in lateral hypothalamus and basal forebrain, which then project to the thalamus and diffusely across the cortex. The medial dorsal tegmental tract is the main conduit for the ascending arousal system to directly activate the thalamic intralaminar nuclei and modulate thalamocortical networks, while the lateral dorsal tegmental tract connects to the thalamic reticular nucleus for regulation of intrathalamic inhibitory networks. The central thalamus (particularly the intralaminar nuclei) and the mesocircuit regulate the arousal system. Lesions to any part of this system, particularly paramedian and bilateral lesions, result in a depressed level of arousal. Distinct from the arousal pathways, the awareness system runs continuously as a stream of consciousness. It consists of large-scale distributed cortical networks that are necessary for representations of the external (executive control network with the dorsal/ventral attention networks) and the internal world (executive control network in conjunction with the default network). A feature of the awareness system is that it does not capture external and internal worlds at once and instead, holds singular representations, serially moment-by-moment. The medial dorsal nucleus of the thalamus serves as the associative nuclei of the default network, and the thalamic reticular nucleus regulates the awareness system. Lesions that disrupt large-scale networks, particularly nodes of cortical hubs, result in lack of awareness. Integrative paradigms such as the integrated information theory and the global neuronal workspace models are attempts to bind awareness and arousal into a unified experience of consciousness.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"207 ","pages":"29-47"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143476461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marie M Vitello, Steven Laureys, Aurore Thibaut, Olivia Gosseries
{"title":"Non-pharmacologic interventions in disorders of consciousness.","authors":"Marie M Vitello, Steven Laureys, Aurore Thibaut, Olivia Gosseries","doi":"10.1016/B978-0-443-13408-1.00007-5","DOIUrl":"https://doi.org/10.1016/B978-0-443-13408-1.00007-5","url":null,"abstract":"<p><p>Severely brain-injured patients with disorders of consciousness pose significant challenges in terms of management, particularly due to the limited therapeutic options available. Despite the potential for some patients to benefit from interventions even years after the injury, clinicians often lack clear and reliable treatment strategies to promote patient recovery. In response to this clinical need, the field of neuromodulation has emerged as a promising alternative to traditional pharmacologic therapies. Both invasive and noninvasive brain stimulation techniques offer diverse possibilities for restoring physiologic neural activity and enhancing functional network integrity in these complex neurological disorders. This chapter offers a comprehensive overview of current neuromodulation techniques, exploring their potential applications and analyzing the existing evidence for their efficacy. Specifically, we describe transcranial electrical stimulation, transcranial magnetic stimulation, deep brain stimulation, low-intensity focused ultrasound, vagal nerve stimulation (including transcutaneous methods), spinal cord stimulation, and median nerve stimulation. While certain approaches show promise for patients with disorders of consciousness, there remains a pressing need for large-scale interventional clinical trials that will play an essential role for elucidating the underlying mechanisms of recovery and for refining stimulation parameters. This, together with the development of tailored individual interventions will move the field forward and optimize therapeutic outcomes.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"207 ","pages":"197-216"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143476463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Brain and behavioral asymmetries in nonprimate species.","authors":"Elisa Frasnelli, Giorgio Vallortigara","doi":"10.1016/B978-0-443-15646-5.00011-7","DOIUrl":"https://doi.org/10.1016/B978-0-443-15646-5.00011-7","url":null,"abstract":"<p><p>Brain and behavioral asymmetries are widespread across the animal kingdom, suggesting that even simpler nervous systems benefit from such features. In the last 30 years, research conducted on several vertebrate (but also invertebrate) animal models has massively contributed to our understanding of the causation, development, evolution, and function of lateralization. Here, we review some of this research, highlighting the importance of studying this topic in nonprimate species for a deeper understanding of the mechanisms behind cerebral asymmetries. We report evidence of handedness and motor asymmetries as well as the results of research on perceptual and cognitive asymmetries in nonprimate animals, analyzing the contribution of such studies in the research field of cerebral asymmetries.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"208 ","pages":"211-230"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143614604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neuroglia in anxiety disorders.","authors":"Robin E Bonomi, Robert Pietrzak, Kelly P Cosgrove","doi":"10.1016/B978-0-443-19102-2.00008-9","DOIUrl":"https://doi.org/10.1016/B978-0-443-19102-2.00008-9","url":null,"abstract":"<p><p>Anxiety disorders are some of the most prevalent in the world and are extraordinarily debilitating to many individuals, costing millions in disability. One of the most disabling is posttraumatic stress disorder (Snijders et al., 2020). Understanding the pathophysiology of these illnesses further and the cell types involved will allow better targeting of treatments. Glial cells, encompassing microglia, astrocytes, and oligodendrocytes, play critical roles in the pathophysiology of PTSD and other anxiety illnesses. Each of these cell types interacts with aspects of neuro-epigenetics, neuroimmune, and neuronal signaling and may contribute to the pathophysiology of anxiety illnesses. This chapter covers the literature on the role of glial cells in the neurobiology and pathology of anxiety disorders, more specifically PTSD. PTSD is one of the most debilitating anxiety disorders and one of the most complicated from a neurobiologic perspective. This chapter also features a discussion surrounding the current state of treatment and some of the hypothesized mechanisms for novel treatments including tetrahydrocannabidiol and 3,4-methylenedioxymethamphetamine. Finally, thoughts on the future directions for precision treatment and pharmacologic development with a focus on neuroglia are undertaken.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"210 ","pages":"335-346"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143729818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexei Verkhratsky, Elly M Hol, Lot D de Witte, Eleonora Aronica
{"title":"General pathophysiology of neuroglia.","authors":"Alexei Verkhratsky, Elly M Hol, Lot D de Witte, Eleonora Aronica","doi":"10.1016/B978-0-443-19102-2.00013-2","DOIUrl":"https://doi.org/10.1016/B978-0-443-19102-2.00013-2","url":null,"abstract":"<p><p>Neuroglia in the CNS, represented by astroglia, oligodendroglia, and microglia, are responsible for the homeostatic support and protection of the nervous tissue. Neuroglia are intimately involved in the pathogenesis of all neurologic diseases, and neuroglial changes to a large extent define the progression of these diseases and their neurologic outcome. In contrast to neurons, neuroglia are capable of mounting an evolutionary conserved response to pathology known as reactive gliosis. Reactive gliosis is initially protective and allostatic, and it is aimed at preserving the nervous tissue function and integrity. However, in many diseases, neuroglial cells undergo atrophy and functional asthenia, contributing to nervous tissue damage.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"210 ","pages":"3-7"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143729779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}