genesis最新文献

筛选
英文 中文
Meet Our Editorial Board—Genesis. An Interview With Margot L. K. Williams, Baylor College of Medicine, Texas, USA
IF 2.4 4区 生物学
genesis Pub Date : 2024-12-17 DOI: 10.1002/dvg.70001
Paul Trevorrow, Margot L. K. Williams
{"title":"Meet Our Editorial Board—Genesis. An Interview With Margot L. K. Williams, Baylor College of Medicine, Texas, USA","authors":"Paul Trevorrow, Margot L. K. Williams","doi":"10.1002/dvg.70001","DOIUrl":"10.1002/dvg.70001","url":null,"abstract":"","PeriodicalId":12718,"journal":{"name":"genesis","volume":"62 5","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation and Characterization of a TRIM21 Overexpressing Mouse Line TRIM21过表达小鼠品系的产生和特征描述
IF 2.4 4区 生物学
genesis Pub Date : 2024-11-01 DOI: 10.1002/dvg.23616
Lisa M. Mehlmann, Tracy F. Uliasz, Siu-Pok Yee, Deborah Kaback, Katie M. Lowther
{"title":"Generation and Characterization of a TRIM21 Overexpressing Mouse Line","authors":"Lisa M. Mehlmann,&nbsp;Tracy F. Uliasz,&nbsp;Siu-Pok Yee,&nbsp;Deborah Kaback,&nbsp;Katie M. Lowther","doi":"10.1002/dvg.23616","DOIUrl":"10.1002/dvg.23616","url":null,"abstract":"<p>Specific removal of a protein is a key to understanding its function. “Trim-Away” utilizes TRIM21, an antibody receptor and ubiquitin ligase, for acute and specific reduction of proteins. When TRIM21 is expressed in cells, introduction of a specific antibody causes rapid degradation of the targeted protein; however, TRIM21 is endogenously expressed in few cell types. We have generated a mouse line using CRISPR to insert a conditional overexpression cassette of TRIM21 into the safe harbor site, <i>Rosa26</i>. These conditionally-expressing mice can be bred to a wide variety of <i>Cre</i> mice to target cell-specific TRIM21 overexpression in different tissues. <i>Zp3</i><sup><i>Cre</i></sup> mice expressed TRIM21 protein specifically in oocytes, whereas <i>Hprt</i><sup><i>Cre</i></sup> mice expressed the protein globally. When TRIM21-overexpressing oocytes were microinjected with specific antibodies targeting either the IP<sub>3</sub> receptor or SNAP23, these proteins were effectively degraded. In addition, cortical neural cells from globally-overexpressing TRIM21 mice showed a dramatic reduction in IP<sub>3</sub> receptor protein within hours after electroporation of a specific antibody. These experiments confirm the effectiveness of the Trim-Away method for protein reduction. These mice should make a valuable addition to the broader research community, as a wide range of proteins and cell types can be studied using this method.</p>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"62 5","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dvg.23616","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression and Transcriptional Targets of TGFβ-RII in Paracentrotus lividus Larval Skeletogenesis TGFβ-RII 在红腹角雉幼体骨骼发生过程中的表达和转录靶标
IF 2.4 4区 生物学
genesis Pub Date : 2024-08-14 DOI: 10.1002/dvg.23614
Daniel Goloe, Tsvia Gildor, Smadar Ben-Tabou de-Leon
{"title":"Expression and Transcriptional Targets of TGFβ-RII in Paracentrotus lividus Larval Skeletogenesis","authors":"Daniel Goloe,&nbsp;Tsvia Gildor,&nbsp;Smadar Ben-Tabou de-Leon","doi":"10.1002/dvg.23614","DOIUrl":"10.1002/dvg.23614","url":null,"abstract":"<p>Organisms from the five kingdoms of life use minerals to harden their tissues and make teeth, shells and skeletons, in the process of biomineralization. The sea urchin larval skeleton is an excellent system to study the biological regulation of biomineralization and its evolution. The gene regulatory network (GRN) that controls sea urchin skeletogenesis is known in great details and shows similarity to the GRN that controls vertebrates' vascularization while it is quite distinct from the GRN that drives vertebrates' bone formation. Yet, transforming growth factor beta (TGF-β) signaling regulates both sea urchin and vertebrates' skeletogenesis. Here, we study the upstream regulation and identify transcriptional targets of TGF-β in the Mediterranean Sea urchin species, <i>Paracentrotus lividus.</i> TGF-βRII is transiently active in the skeletogenic cells downstream of vascular endothelial growth factor (VEGF) signaling, in <i>P. lividus</i>. Continuous perturbation of TGF-βRII activity significantly impairs skeletal elongation and the expression of key skeletogenic genes. Perturbation of TGF-βRII after skeletal initiation leads to a delay in skeletal elongation and minor changes in gene expression. TGF-β targets are distinct from its transcriptional targets during vertebrates' bone formation, suggesting that the role of TGF-β in biomineralization in these two phyla results from convergent evolution.</p>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"62 4","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dvg.23614","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141977034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation of an Armcx1 Conditional Knockout Mouse Armcx1 条件性基因敲除小鼠的产生
IF 2.4 4区 生物学
genesis Pub Date : 2024-08-14 DOI: 10.1002/dvg.23615
Cora L. Bright, Howard M. Bomze, Mantu Bhaumik, Jeremy N. Kay, Romain Cartoni, Sidney M. Gospe III
{"title":"Generation of an Armcx1 Conditional Knockout Mouse","authors":"Cora L. Bright,&nbsp;Howard M. Bomze,&nbsp;Mantu Bhaumik,&nbsp;Jeremy N. Kay,&nbsp;Romain Cartoni,&nbsp;Sidney M. Gospe III","doi":"10.1002/dvg.23615","DOIUrl":"10.1002/dvg.23615","url":null,"abstract":"<div>\u0000 \u0000 <p>Armadillo repeat-containing X-linked protein-1 (Armcx1) is a poorly characterized transmembrane protein that regulates mitochondrial transport in neurons. Its overexpression has been shown to induce neurite outgrowth in embryonic neurons and to promote retinal ganglion cell (RGC) survival and axonal regrowth in a mouse optic nerve crush model. In order to evaluate the functions of endogenous Armcx1 <i>in vivo</i>, we have created a conditional <i>Armcx1</i> knockout mouse line in which the entire coding region of the <i>Armcx1</i> gene is flanked by <i>loxP</i> sites. This <i>Armcx1</i><sup><i>fl</i></sup> line was crossed with mouse strains in which Cre recombinase expression is driven by the promoters for <i>β-actin</i> and <i>Six3</i>, in order to achieve deletion of <i>Armcx1</i> globally and in retinal neurons, respectively. Having confirmed deletion of the gene, we proceeded to characterize the abundance and morphology of RGCs in <i>Armcx1</i> knockout mice aged to 15 months. Under normal physiological conditions, no evidence of aberrant retinal or optic nerve development or RGC degeneration was observed in these mice. The <i>Armcx1</i><sup><i>fl</i></sup> mouse should be valuable for future studies investigating mitochondrial morphology and transport in the absence of Armcx1 and in determining the susceptibility of Armcx1-deficient neurons to degeneration in the setting of additional heritable or environmental stressors.</p>\u0000 </div>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"62 4","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141977035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sox21 homeologs autoregulate expression levels to control progression through neurogenesis Sox21同源物通过自动调节表达水平来控制神经发生的进展。
IF 2.4 4区 生物学
genesis Pub Date : 2024-07-26 DOI: 10.1002/dvg.23612
Dillon L. Damuth, Doreen D. Cunningham, Elena M. Silva
{"title":"Sox21 homeologs autoregulate expression levels to control progression through neurogenesis","authors":"Dillon L. Damuth,&nbsp;Doreen D. Cunningham,&nbsp;Elena M. Silva","doi":"10.1002/dvg.23612","DOIUrl":"10.1002/dvg.23612","url":null,"abstract":"<div>\u0000 \u0000 <p>The SRY HMG box transcription factor Sox21 plays multiple critical roles in neurogenesis, with its function dependent on concentration and developmental stage. In the allotetraploid <i>Xenopus laevis</i>, there are two homeologs of <i>sox21</i>, namely <i>sox21.S</i> and <i>sox21.L</i>. Previous studies focused on Sox21.S, but its amino acid sequence is divergent, lacking conserved poly-A stretches and bearing more similarity with ancestral homologs. In contrast, Sox21.L shares higher sequence similarity with mouse and chick Sox21. To determine if Sox21.S and Sox21.L have distinct functions, we conducted gain and loss-of-function studies in <i>Xenopus</i> embryos. Our studies revealed that Sox21.S and Sox21.L are functionally redundant, but Sox21.L is more effective at driving changes than Sox21.S. These results also support our earlier findings in ectodermal explants, demonstrating that Sox21 function is dose-dependent. While Sox21 is necessary for primary neuron formation, high levels prevent their formation. Strikingly, these proteins autoregulate, with high levels of Sox21.L reducing <i>sox21.S</i> and <i>sox21.L</i> mRNA levels, and decreased Sox21.S promoting increased expression of <i>sox21.L</i>. Our findings shed light on the intricate concentration-dependent roles of Sox21 homeologs in <i>Xenopus</i> neurogenesis.</p>\u0000 </div>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"62 4","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two decades on: Special issue on olfaction celebrating Axel and Buck's Nobel Prize 二十年后:庆祝阿克塞尔和巴克获得诺贝尔奖的嗅觉特刊。
IF 2.4 4区 生物学
genesis Pub Date : 2024-07-26 DOI: 10.1002/dvg.23613
Paolo E. Forni, C. Ron Yu
{"title":"Two decades on: Special issue on olfaction celebrating Axel and Buck's Nobel Prize","authors":"Paolo E. Forni,&nbsp;C. Ron Yu","doi":"10.1002/dvg.23613","DOIUrl":"10.1002/dvg.23613","url":null,"abstract":"","PeriodicalId":12718,"journal":{"name":"genesis","volume":"62 4","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of olfactory experience on the birthrates of olfactory sensory neurons with specific odorant receptor identities 嗅觉经验对具有特定气味受体特征的嗅觉神经元出生率的影响
IF 1.5 4区 生物学
genesis Pub Date : 2024-06-18 DOI: 10.1002/dvg.23611
Karlin E. Rufenacht, Alexa J. Asson, Kawsar Hossain, Stephen W. Santoro
{"title":"The influence of olfactory experience on the birthrates of olfactory sensory neurons with specific odorant receptor identities","authors":"Karlin E. Rufenacht,&nbsp;Alexa J. Asson,&nbsp;Kawsar Hossain,&nbsp;Stephen W. Santoro","doi":"10.1002/dvg.23611","DOIUrl":"10.1002/dvg.23611","url":null,"abstract":"<div>\u0000 \u0000 <p>Olfactory sensory neurons (OSNs) are one of a few neuron types that are generated continuously throughout life in mammals. The persistence of olfactory sensory neurogenesis beyond early development has long been thought to function simply to replace neurons that are lost or damaged through exposure to environmental insults. The possibility that olfactory sensory neurogenesis may also serve an adaptive function has received relatively little consideration, largely due to the assumption that the generation of new OSNs is stochastic with respect to OSN subtype, as defined by the single odorant receptor gene that each neural precursor stochastically chooses for expression out of hundreds of possibilities. Accordingly, the relative birthrates of different OSN subtypes are predicted to be constant and impervious to olfactory experience. This assumption has been called into question, however, by evidence that the birthrates of specific OSN subtypes can be selectively altered by manipulating olfactory experience through olfactory deprivation, enrichment, and conditioning paradigms. Moreover, studies of recovery of the OSN population following injury provide further evidence that olfactory sensory neurogenesis may not be strictly stochastic with respect to subtype. Here we review this evidence and consider mechanistic and functional implications of the prospect that specific olfactory experiences can regulate olfactory sensory neurogenesis rates in a subtype-selective manner.</p>\u0000 </div>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"62 3","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roles of odorant receptors during olfactory glomerular map formation 嗅觉肾小球图形成过程中气味受体的作用
IF 1.5 4区 生物学
genesis Pub Date : 2024-06-14 DOI: 10.1002/dvg.23610
Ai Nakashima, Haruki Takeuchi
{"title":"Roles of odorant receptors during olfactory glomerular map formation","authors":"Ai Nakashima,&nbsp;Haruki Takeuchi","doi":"10.1002/dvg.23610","DOIUrl":"10.1002/dvg.23610","url":null,"abstract":"<p>The organization of the olfactory glomerular map involves the convergence of olfactory sensory neurons (OSNs) expressing the same odorant receptor (OR) into glomeruli in the olfactory bulb (OB). A remarkable feature of the olfactory glomerular map formation is that the identity of OR instructs the topography of the bulb, resulting in thousands of discrete glomeruli in mice. Several lines of evidence indicate that ORs control the expression levels of various kinds of transmembrane proteins to form glomeruli at appropriate regions of the OB. In this review, we will discuss how the OR identity is decoded by OSNs into gene expression through intracellular regulatory mechanisms.</p>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"62 3","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dvg.23610","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141318687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CircSCNN1A inhibits the proliferation, migration and invasion of renal cell carcinoma cells by decreasing CLDN8 expression through miR-590-5p CircSCNN1A 通过 miR-590-5p 降低 CLDN8 的表达,从而抑制肾细胞癌细胞的增殖、迁移和侵袭。
IF 1.5 4区 生物学
genesis Pub Date : 2024-05-19 DOI: 10.1002/dvg.23599
Tingting Guo, Wanjuan Xiong, Chong Liu, Li Zhu, Ling Xie
{"title":"CircSCNN1A inhibits the proliferation, migration and invasion of renal cell carcinoma cells by decreasing CLDN8 expression through miR-590-5p","authors":"Tingting Guo,&nbsp;Wanjuan Xiong,&nbsp;Chong Liu,&nbsp;Li Zhu,&nbsp;Ling Xie","doi":"10.1002/dvg.23599","DOIUrl":"10.1002/dvg.23599","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Increasing evidence suggests that circular RNA (circRNA) plays a regulatory role in the progression of renal cell carcinoma (RCC). However, the precise function and underlying mechanism of circSCNN1A in RCC progression still remain unclear.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>The expression levels of circSCNN1A, microRNA-590-5p (miR-590-5p), claudin 8 (CLDN8), cyclin D1, matrix metalloprotein 2 (MMP2), MMP9, E-cadherin, N-cadherin and vimentin were detected by a quantitative real-time polymerase chain reaction and Western blotting analysis. Immunohistochemistry assay was performed to analyze the positive expression rate of CLDN8. Cell proliferation was investigated by cell colony formation, 5-Ethynyl-2′-deoxyuridine and DNA content quantitation assays. Cell migration and invasion were assessed by wound-healing and transwell invasion assays. Interactions among circSCNN1A, miR-590-5p and CLDN8 were identified by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. Xenograft mouse model assay was conducted to verify the effect of circSCNN1A on tumor formation in vivo.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>CircSCNN1A and CLDN8 expression were significantly downregulated, while miR-590-5p was upregulated in both RCC tissues and cells. CircSCNN1A overexpression inhibited RCC cell proliferation, migration and invasion, accompanied by decreases of cyclin D1, MMP2, MMP9, N-cadherin and vimentin expression and an increase of E-cadherin expression. CircSCNN1A acted as a miR-590-5p sponge and regulated RCC cell processes by binding to miR-590-5p. CLDN8, a target gene of miR-590-5p, was involved in the regulation of the biological behaviors of RCC cells by miR-590-5p. In addition, circSCNN1A induced CLDN8 production by interacting with miR-590-5p. Further, circSCNN1A suppressed tumor formation in vivo.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>CircSCNN1A inhibited RCC cell proliferation, migration and invasion by regulating the miR-590-5p/CLDN8 pathway.</p>\u0000 </section>\u0000 </div>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"62 3","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphodiesterase 5A regulates the vomeronasal pump in mice 磷酸二酯酶 5A 调节小鼠的绒毛膜泵
IF 1.5 4区 生物学
genesis Pub Date : 2024-05-13 DOI: 10.1002/dvg.23603
Dennean S. Lippner, Jiang Xu, Siqi Ma, Johannes Reisert, Haiqing Zhao
{"title":"Phosphodiesterase 5A regulates the vomeronasal pump in mice","authors":"Dennean S. Lippner,&nbsp;Jiang Xu,&nbsp;Siqi Ma,&nbsp;Johannes Reisert,&nbsp;Haiqing Zhao","doi":"10.1002/dvg.23603","DOIUrl":"10.1002/dvg.23603","url":null,"abstract":"<div>\u0000 \u0000 <p>The vomeronasal organ (VNO) is a specialized chemoreceptive structure in many vertebrates that detects chemical stimuli, mostly pheromones, which often elicit innate behaviors such as mating and aggression. Previous studies in rodents have demonstrated that chemical stimuli are actively transported to the VNO via a blood vessel-based pumping mechanism, and this pumping mechanism is necessary for vomeronasal stimulation in behaving animals. However, the molecular mechanisms that regulate the vomeronasal pump remain mostly unknown. In this study, we observed a high level of expression of phosphodiesterase 5A (PDE5A) in the vomeronasal blood vessel of mice. We provided evidence to support the potential role of PDE5A in vomeronasal pump regulation. Local application of PDE5A inhibitors—sildenafil or tadalafil—to the vomeronasal organ (VNO) reduced stimulus delivery into the VNO, decreased the pheromone-induced activity of vomeronasal sensory neurons, and attenuated male–male aggressive behaviors. PDE5A is well known to play a role in regulating blood vessel tone in several organs. Our study advances our understanding of the molecular regulation of the vomeronasal pump.</p>\u0000 </div>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"62 3","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140912480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信