Haofei Ni, Kevin Kelley, Ning Xie, Hongyan Zou, Roland H. Friedel
{"title":"Generation of Plexin-B1 Conditional Knockout Mouse With CRISPR/Cas9 Technology","authors":"Haofei Ni, Kevin Kelley, Ning Xie, Hongyan Zou, Roland H. Friedel","doi":"10.1002/dvg.70019","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Plexins are axon guidance transmembrane receptors that control cytoskeleton and membrane dynamics in development and adult physiology. As plexins are expressed in multiple cell types in various tissues, floxed alleles that enable conditional deletion are needed to facilitate cell type-specific functional analysis. We report here the generation of a conditional floxed allele of Plexin-B1 (gene symbol <i>Plxnb1</i>) in mouse using CRISPR/Cas9 technology to insert two loxP sites flanking critical exons. Targeting reagents (Cas9 protein, sgRNAs, ssODNs) were delivered into single-cell embryos by electroporation. After screening a total of 128 mouse pups by PCR and Sanger sequencing, two mice were identified carrying both loxP sites in the targeted <i>Plxnb1</i> locus (success rate ~ 1.6%). The usage of Alt-R modified ssODNs increased targeting frequencies at one loxP site, but not the other. We also tested homology directed repair (HDR) enhancer V2 reagent, but addition of the enhancer reduced the viability of mouse embryos. The <i>Plxnb1</i><sup>flox</sup> allele was successfully transmitted through the germline in Mendelian ratios, and effective excision of the floxed region was confirmed by breeding with Cre recombinase strains.</p>\n </div>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"63 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"genesis","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dvg.70019","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plexins are axon guidance transmembrane receptors that control cytoskeleton and membrane dynamics in development and adult physiology. As plexins are expressed in multiple cell types in various tissues, floxed alleles that enable conditional deletion are needed to facilitate cell type-specific functional analysis. We report here the generation of a conditional floxed allele of Plexin-B1 (gene symbol Plxnb1) in mouse using CRISPR/Cas9 technology to insert two loxP sites flanking critical exons. Targeting reagents (Cas9 protein, sgRNAs, ssODNs) were delivered into single-cell embryos by electroporation. After screening a total of 128 mouse pups by PCR and Sanger sequencing, two mice were identified carrying both loxP sites in the targeted Plxnb1 locus (success rate ~ 1.6%). The usage of Alt-R modified ssODNs increased targeting frequencies at one loxP site, but not the other. We also tested homology directed repair (HDR) enhancer V2 reagent, but addition of the enhancer reduced the viability of mouse embryos. The Plxnb1flox allele was successfully transmitted through the germline in Mendelian ratios, and effective excision of the floxed region was confirmed by breeding with Cre recombinase strains.
期刊介绍:
As of January 2000, Developmental Genetics was renamed and relaunched as genesis: The Journal of Genetics and Development, with a new scope and Editorial Board. The journal focuses on work that addresses the genetics of development and the fundamental mechanisms of embryological processes in animals and plants. With increased awareness of the interplay between genetics and evolutionary change, particularly during developmental processes, we encourage submission of manuscripts from all ecological niches. The expanded numbers of genomes for which sequencing is being completed will facilitate genetic and genomic examination of developmental issues, even if the model system does not fit the “classical genetic” mold. Therefore, we encourage submission of manuscripts from all species. Other areas of particular interest include: 1) the roles of epigenetics, microRNAs and environment on developmental processes; 2) genome-wide studies; 3) novel imaging techniques for the study of gene expression and cellular function; 4) comparative genetics and genomics and 5) animal models of human genetic and developmental disorders.
genesis presents reviews, full research articles, short research letters, and state-of-the-art technology reports that promote an understanding of the function of genes and the roles they play in complex developmental processes.