{"title":"Tracing Early Migratory Neurons in the Developing Nose Using Contactin-2 (Cntn2) CreERT2","authors":"Enrico Amato Jr., Alexis M. Semon, Paolo E. Forni","doi":"10.1002/dvg.70021","DOIUrl":null,"url":null,"abstract":"<p>Neuronal migration during embryonic development is a fundamental process. In the developing nose of rodents, neurons that form during early neurogenic waves in the olfactory placode leave this structure to migrate toward or into the developing brain as part of the migratory mass. This mass includes gonadotropin-releasing hormone-1 (GnRH-1) neurons, pioneer/terminal nerve (TN) neurons, as well as neural crest-derived olfactory glial cells called olfactory ensheathing cells. There have been a limited number of molecular markers available to effectively trace and functionally manipulate the early migratory neurons that originate in the olfactory region. Contactin-2 (Cntn2), also known as transiently expressed axonal surface glycoprotein-1 (TAG-1), has been used to label various developing neuronal populations, including the commissural neurons of the spinal cord, motor neurons, and TN neurons. Previous single-cell RNA sequencing analyses of the developing olfactory system have identified Cntn2 expression in the TN, suggesting that Cntn2 is a suitable molecular marker for studying nasal migratory neurons. To trace Cntn2 expression in the developing olfactory system, we generated an inducible Cntn2CreERT2 mouse line. In this study, we outline how this mouse line can serve as an effective tool for time-controlled chimeric manipulation of specific neuronal populations of interest.</p>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"63 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dvg.70021","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"genesis","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dvg.70021","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuronal migration during embryonic development is a fundamental process. In the developing nose of rodents, neurons that form during early neurogenic waves in the olfactory placode leave this structure to migrate toward or into the developing brain as part of the migratory mass. This mass includes gonadotropin-releasing hormone-1 (GnRH-1) neurons, pioneer/terminal nerve (TN) neurons, as well as neural crest-derived olfactory glial cells called olfactory ensheathing cells. There have been a limited number of molecular markers available to effectively trace and functionally manipulate the early migratory neurons that originate in the olfactory region. Contactin-2 (Cntn2), also known as transiently expressed axonal surface glycoprotein-1 (TAG-1), has been used to label various developing neuronal populations, including the commissural neurons of the spinal cord, motor neurons, and TN neurons. Previous single-cell RNA sequencing analyses of the developing olfactory system have identified Cntn2 expression in the TN, suggesting that Cntn2 is a suitable molecular marker for studying nasal migratory neurons. To trace Cntn2 expression in the developing olfactory system, we generated an inducible Cntn2CreERT2 mouse line. In this study, we outline how this mouse line can serve as an effective tool for time-controlled chimeric manipulation of specific neuronal populations of interest.
期刊介绍:
As of January 2000, Developmental Genetics was renamed and relaunched as genesis: The Journal of Genetics and Development, with a new scope and Editorial Board. The journal focuses on work that addresses the genetics of development and the fundamental mechanisms of embryological processes in animals and plants. With increased awareness of the interplay between genetics and evolutionary change, particularly during developmental processes, we encourage submission of manuscripts from all ecological niches. The expanded numbers of genomes for which sequencing is being completed will facilitate genetic and genomic examination of developmental issues, even if the model system does not fit the “classical genetic” mold. Therefore, we encourage submission of manuscripts from all species. Other areas of particular interest include: 1) the roles of epigenetics, microRNAs and environment on developmental processes; 2) genome-wide studies; 3) novel imaging techniques for the study of gene expression and cellular function; 4) comparative genetics and genomics and 5) animal models of human genetic and developmental disorders.
genesis presents reviews, full research articles, short research letters, and state-of-the-art technology reports that promote an understanding of the function of genes and the roles they play in complex developmental processes.