Excluding the Genomic Location of Pax2 Regulatory Elements for the Developing Mouse Eye

IF 2.4 4区 生物学 Q2 DEVELOPMENTAL BIOLOGY
genesis Pub Date : 2025-04-29 DOI:10.1002/dvg.70016
Tzu-Hua Ho, Daniela Santamaria-Munoz, Hollin Hamelynck, Anna La Torre, Tom Glaser, Nadean L. Brown
{"title":"Excluding the Genomic Location of Pax2 Regulatory Elements for the Developing Mouse Eye","authors":"Tzu-Hua Ho,&nbsp;Daniela Santamaria-Munoz,&nbsp;Hollin Hamelynck,&nbsp;Anna La Torre,&nbsp;Tom Glaser,&nbsp;Nadean L. Brown","doi":"10.1002/dvg.70016","DOIUrl":null,"url":null,"abstract":"<p>The <i>Pax2</i> transcription factor is activated uniformly in the optic vesicle/cup, but becomes progressively restricted to the forming optic disc and stalk. In the eye, it is not known how <i>Pax2</i> expression is regulated and progressively restricted, in part because no <i>Pax2</i> regulatory elements have been identified for this organ. Multiple Pax2-Cre mouse transgenic lines have been produced, but essentially none of these Cre recombinase drivers are active in the visual system. Only Tg(BAC-Pax2-cre)<sup>Akg</sup> mice have been reported to express Cre in a subset of postnatal retinal astrocytes. We confirm this observation and demonstrate ectopic expression in branchial arches, extraocular muscles, and a subset of GABAergic amacrine cells. Our findings suggest that major eye enhancer(s) for mouse <i>Pax2</i> reside outside the &gt; 180 kb genomic segment delimited by <i>Pax2</i> BAC transgenes.</p>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"63 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dvg.70016","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"genesis","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dvg.70016","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Pax2 transcription factor is activated uniformly in the optic vesicle/cup, but becomes progressively restricted to the forming optic disc and stalk. In the eye, it is not known how Pax2 expression is regulated and progressively restricted, in part because no Pax2 regulatory elements have been identified for this organ. Multiple Pax2-Cre mouse transgenic lines have been produced, but essentially none of these Cre recombinase drivers are active in the visual system. Only Tg(BAC-Pax2-cre)Akg mice have been reported to express Cre in a subset of postnatal retinal astrocytes. We confirm this observation and demonstrate ectopic expression in branchial arches, extraocular muscles, and a subset of GABAergic amacrine cells. Our findings suggest that major eye enhancer(s) for mouse Pax2 reside outside the > 180 kb genomic segment delimited by Pax2 BAC transgenes.

Abstract Image

排除发育中的小鼠眼睛Pax2调控元件的基因组位置
Pax2转录因子在视神经囊泡/杯内被均匀激活,但逐渐局限于视神经盘和视神经柄的形成。在眼睛中,Pax2的表达是如何被调节和逐渐被限制的尚不清楚,部分原因是没有发现该器官的Pax2调节元件。多种Pax2-Cre小鼠转基因系已经产生,但基本上这些Cre重组酶驱动程序在视觉系统中都不活跃。据报道,只有Tg(BAC-Pax2-cre)Akg小鼠在出生后视网膜星形胶质细胞亚群中表达Cre。我们证实了这一观察结果,并证明异位表达在鳃弓、眼外肌和gaba能无突细胞亚群中。我们的研究结果表明,小鼠Pax2的主要眼睛增强子位于由Pax2 BAC转基因划定的180 kb基因组片段之外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
genesis
genesis 生物-发育生物学
CiteScore
3.60
自引率
0.00%
发文量
40
审稿时长
6-12 weeks
期刊介绍: As of January 2000, Developmental Genetics was renamed and relaunched as genesis: The Journal of Genetics and Development, with a new scope and Editorial Board. The journal focuses on work that addresses the genetics of development and the fundamental mechanisms of embryological processes in animals and plants. With increased awareness of the interplay between genetics and evolutionary change, particularly during developmental processes, we encourage submission of manuscripts from all ecological niches. The expanded numbers of genomes for which sequencing is being completed will facilitate genetic and genomic examination of developmental issues, even if the model system does not fit the “classical genetic” mold. Therefore, we encourage submission of manuscripts from all species. Other areas of particular interest include: 1) the roles of epigenetics, microRNAs and environment on developmental processes; 2) genome-wide studies; 3) novel imaging techniques for the study of gene expression and cellular function; 4) comparative genetics and genomics and 5) animal models of human genetic and developmental disorders. genesis presents reviews, full research articles, short research letters, and state-of-the-art technology reports that promote an understanding of the function of genes and the roles they play in complex developmental processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信