Frontiers in Neural Circuits最新文献

筛选
英文 中文
Neural basis for pheromone signal transduction in mice 小鼠信息素信号转导的神经基础
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2024-04-15 DOI: 10.3389/fncir.2024.1409994
Ken Murata, Takumi Itakura, Kazushige Touhara
{"title":"Neural basis for pheromone signal transduction in mice","authors":"Ken Murata, Takumi Itakura, Kazushige Touhara","doi":"10.3389/fncir.2024.1409994","DOIUrl":"https://doi.org/10.3389/fncir.2024.1409994","url":null,"abstract":"Pheromones are specialized chemical messengers used for inter-individual communication within the same species, playing crucial roles in modulating behaviors and physiological states. The detection mechanisms of these signals at the peripheral organ and their transduction to the brain have been unclear. However, recent identification of pheromone molecules, their corresponding receptors, and advancements in neuroscientific technology have started to elucidate these processes. In mammals, the detection and interpretation of pheromone signals are primarily attributed to the vomeronasal system, which is a specialized olfactory apparatus predominantly dedicated to decoding socio-chemical cues. In this mini-review, we aim to delineate the vomeronasal signal transduction pathway initiated by specific vomeronasal receptor-ligand interactions in mice. First, we catalog the previously identified pheromone ligands and their corresponding receptor pairs, providing a foundational understanding of the specificity inherent in pheromonal communication. Subsequently, we examine the neural circuits involved in processing each pheromone signal. We focus on the anatomical pathways, the sexually dimorphic and physiological state-dependent aspects of signal transduction, and the neural coding strategies underlying behavioral responses to pheromonal cues. These insights provide further critical questions regarding the development of innate circuit formation and plasticity within these circuits.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large-scale coupling of prefrontal activity patterns as a mechanism for cognitive control in health and disease: evidence from rodent models 作为健康和疾病认知控制机制的前额叶活动模式的大规模耦合:来自啮齿动物模型的证据
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2024-04-04 DOI: 10.3389/fncir.2024.1286111
Ignacio Negrón-Oyarzo, Tatiana Dib, Lorena Chacana-Véliz, Nélida López-Quilodrán, Jocelyn Urrutia-Piñones
{"title":"Large-scale coupling of prefrontal activity patterns as a mechanism for cognitive control in health and disease: evidence from rodent models","authors":"Ignacio Negrón-Oyarzo, Tatiana Dib, Lorena Chacana-Véliz, Nélida López-Quilodrán, Jocelyn Urrutia-Piñones","doi":"10.3389/fncir.2024.1286111","DOIUrl":"https://doi.org/10.3389/fncir.2024.1286111","url":null,"abstract":"Cognitive control of behavior is crucial for well-being, as allows subject to adapt to changing environments in a goal-directed way. Changes in cognitive control of behavior is observed during cognitive decline in elderly and in pathological mental conditions. Therefore, the recovery of cognitive control may provide a reliable preventive and therapeutic strategy. However, its neural basis is not completely understood. Cognitive control is supported by the prefrontal cortex, structure that integrates relevant information for the appropriate organization of behavior. At neurophysiological level, it is suggested that cognitive control is supported by local and large-scale synchronization of oscillatory activity patterns and neural spiking activity between the prefrontal cortex and distributed neural networks. In this review, we focus mainly on rodent models approaching the neuronal origin of these prefrontal patterns, and the cognitive and behavioral relevance of its coordination with distributed brain systems. We also examine the relationship between cognitive control and neural activity patterns in the prefrontal cortex, and its role in normal cognitive decline and pathological mental conditions. Finally, based on these body of evidence, we propose a common mechanism that may underlie the impaired cognitive control of behavior.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140583655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Agranular frontal cortical microcircuit underlying cognitive control in macaques 猕猴认知控制背后的额叶皮层微电路
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2024-03-27 DOI: 10.3389/fncir.2024.1389110
Beatriz Herrera, Jeffrey D. Schall, Jorge J. Riera
{"title":"Agranular frontal cortical microcircuit underlying cognitive control in macaques","authors":"Beatriz Herrera, Jeffrey D. Schall, Jorge J. Riera","doi":"10.3389/fncir.2024.1389110","DOIUrl":"https://doi.org/10.3389/fncir.2024.1389110","url":null,"abstract":"The error-related negativity and an N2-component recorded over medial frontal cortex index core functions of cognitive control. While they are known to originate from agranular frontal areas, the underlying microcircuit mechanisms remain elusive. Most insights about microcircuit function have been derived from variations of the so-called canonical microcircuit model. These microcircuit architectures are based extensively on studies from granular sensory cortical areas in monkeys, cats, and rodents. However, evidence has shown striking cytoarchitectonic differences across species and differences in the functional relationships across cortical layers in agranular compared to granular sensory areas. In this minireview, we outline a tentative microcircuit model underlying cognitive control in the agranular frontal cortex of primates. The model incorporates the main GABAergic interneuron subclasses with specific laminar arrangements and target regions on pyramidal cells. We emphasize the role of layer 5 pyramidal cells in error and conflict detection. We offer several specific questions necessary for creating a specific intrinsic microcircuit model of the agranular frontal cortex.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140315529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circadian rhythm mechanism in the suprachiasmatic nucleus and its relation to the olfactory system 丘脑上核的昼夜节律机制及其与嗅觉系统的关系
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2024-03-25 DOI: 10.3389/fncir.2024.1385908
Yusuke Tsuno, Michihiro Mieda
{"title":"Circadian rhythm mechanism in the suprachiasmatic nucleus and its relation to the olfactory system","authors":"Yusuke Tsuno, Michihiro Mieda","doi":"10.3389/fncir.2024.1385908","DOIUrl":"https://doi.org/10.3389/fncir.2024.1385908","url":null,"abstract":"Animals need sleep, and the suprachiasmatic nucleus, the center of the circadian rhythm, plays an important role in determining the timing of sleep. The main input to the suprachiasmatic nucleus is the retinohypothalamic tract, with additional inputs from the intergeniculate leaflet pathway, the serotonergic afferent from the raphe, and other hypothalamic regions. Within the suprachiasmatic nucleus, two of the major subtypes are vasoactive intestinal polypeptide (VIP)-positive neurons and arginine-vasopressin (AVP)-positive neurons. VIP neurons are important for light entrainment and synchronization of suprachiasmatic nucleus neurons, whereas AVP neurons are important for circadian period determination. Output targets of the suprachiasmatic nucleus include the hypothalamus (subparaventricular zone, paraventricular hypothalamic nucleus, preoptic area, and medial hypothalamus), the thalamus (paraventricular thalamic nuclei), and lateral septum. The suprachiasmatic nucleus also sends information through several brain regions to the pineal gland. The olfactory bulb is thought to be able to generate a circadian rhythm without the suprachiasmatic nucleus. Some reports indicate that circadian rhythms of the olfactory bulb and olfactory cortex exist in the absence of the suprachiasmatic nucleus, but another report claims the influence of the suprachiasmatic nucleus. The regulation of circadian rhythms by sensory inputs other than light stimuli, including olfaction, has not been well studied and further progress is expected.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140302675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Olfactory information processing viewed through mitral and tufted cell-specific channels 通过有丝分裂细胞和簇状细胞特异性通道观察嗅觉信息处理过程
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2024-03-08 DOI: 10.3389/fncir.2024.1382626
Tatsumi Hirata
{"title":"Olfactory information processing viewed through mitral and tufted cell-specific channels","authors":"Tatsumi Hirata","doi":"10.3389/fncir.2024.1382626","DOIUrl":"https://doi.org/10.3389/fncir.2024.1382626","url":null,"abstract":"Parallel processing is a fundamental strategy of sensory coding. Through this processing, unique and distinct features of sensations are computed and projected to the central targets. This review proposes that mitral and tufted cells, which are the second-order projection neurons in the olfactory bulb, contribute to parallel processing within the olfactory system. Based on anatomical and functional evidence, I discuss potential features that could be conveyed through the unique channel formed by these neurons.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140072074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An operating principle of the cerebral cortex, and a cellular mechanism for attentional trial-and-error pattern learning and useful classification extraction 大脑皮层的工作原理,以及注意力试错模式学习和有用分类提取的细胞机制
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2024-03-05 DOI: 10.3389/fncir.2024.1280604
Marat M. Rvachev
{"title":"An operating principle of the cerebral cortex, and a cellular mechanism for attentional trial-and-error pattern learning and useful classification extraction","authors":"Marat M. Rvachev","doi":"10.3389/fncir.2024.1280604","DOIUrl":"https://doi.org/10.3389/fncir.2024.1280604","url":null,"abstract":"A feature of the brains of intelligent animals is the ability to learn to respond to an ensemble of active neuronal inputs with a behaviorally appropriate ensemble of active neuronal outputs. Previously, a hypothesis was proposed on how this mechanism is implemented at the cellular level within the neocortical pyramidal neuron: the apical tuft or perisomatic inputs initiate “guess” neuron firings, while the basal dendrites identify input patterns based on excited synaptic clusters, with the cluster excitation strength adjusted based on reward feedback. This simple mechanism allows neurons to learn to classify their inputs in a surprisingly intelligent manner. Here, we revise and extend this hypothesis. We modify synaptic plasticity rules to align with behavioral time scale synaptic plasticity (BTSP) observed in hippocampal area CA1, making the framework more biophysically and behaviorally plausible. The neurons for the guess firings are selected in a voluntary manner via feedback connections to apical tufts in the neocortical layer 1, leading to dendritic Ca<jats:sup>2+</jats:sup> spikes with burst firing, which are postulated to be neural correlates of attentional, aware processing. Once learned, the neuronal input classification is executed without voluntary or conscious control, enabling hierarchical incremental learning of classifications that is effective in our inherently classifiable world. In addition to voluntary, we propose that pyramidal neuron burst firing can be involuntary, also initiated via apical tuft inputs, drawing attention toward important cues such as novelty and noxious stimuli. We classify the excitations of neocortical pyramidal neurons into four categories based on their excitation pathway: attentional versus automatic and voluntary/acquired versus involuntary. Additionally, we hypothesize that dendrites within pyramidal neuron minicolumn bundles are coupled via depolarization cross-induction, enabling minicolumn functions such as the creation of powerful hierarchical “hyperneurons” and the internal representation of the external world. We suggest building blocks to extend the microcircuit theory to network-level processing, which, interestingly, yields variants resembling the artificial neural networks currently in use. On a more speculative note, we conjecture that principles of intelligence in universes governed by certain types of physical laws might resemble ours.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140046677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circuit formation and sensory perception in the mouse olfactory system 小鼠嗅觉系统的电路形成和感知能力
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2024-02-16 DOI: 10.3389/fncir.2024.1342576
Kensaku Mori, Hitoshi Sakano
{"title":"Circuit formation and sensory perception in the mouse olfactory system","authors":"Kensaku Mori, Hitoshi Sakano","doi":"10.3389/fncir.2024.1342576","DOIUrl":"https://doi.org/10.3389/fncir.2024.1342576","url":null,"abstract":"In the mouse olfactory system, odor information is converted to a topographic map of activated glomeruli in the olfactory bulb (OB). Although the arrangement of glomeruli is genetically determined, the glomerular structure is plastic and can be modified by environmental stimuli. If the pups are exposed to a particular odorant, responding glomeruli become larger recruiting the dendrites of connecting projection neurons and interneurons. This imprinting not only increases the sensitivity to the exposed odor, but also imposes the positive quality on imprinted memory. External odor information represented as an odor map in the OB is transmitted to the olfactory cortex (OC) and amygdala for decision making to elicit emotional and behavioral outputs using two distinct neural pathways, innate and learned. Innate olfactory circuits start to work right after birth, whereas learned circuits become functional later on. In this paper, the recent progress will be summarized in the study of olfactory circuit formation and odor perception in mice. We will also propose new hypotheses on the timing and gating of olfactory circuit activity in relation to the respiration cycle.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139758065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The ventral hippocampus is activated in olfactory but not auditory threat memory 腹侧海马在嗅觉而非听觉威胁记忆中被激活
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2024-02-15 DOI: 10.3389/fncir.2024.1371130
Tayebeh Sepahvand, Samantha J. Carew, Qi Yuan
{"title":"The ventral hippocampus is activated in olfactory but not auditory threat memory","authors":"Tayebeh Sepahvand, Samantha J. Carew, Qi Yuan","doi":"10.3389/fncir.2024.1371130","DOIUrl":"https://doi.org/10.3389/fncir.2024.1371130","url":null,"abstract":"<p>Hippocampal networks required for associative memory formation are involved in cue- and context-dependent threat conditioning. The hippocampus is functionally heterogeneous at its dorsal and ventral poles, and recent investigations have focused on the specific roles required from each sub-region for associative conditioning. Cumulative evidence suggests that contextual and emotional information is processed by the dorsal and ventral hippocampus, respectively. However, it is not well understood how these two divisions engage in threat conditioning with cues of different sensory modalities. Here, we compare the involvement of the dorsal and ventral hippocampus in two types of threat conditioning: olfactory and auditory. Our results suggest that the dorsal hippocampus encodes contextual information and is activated upon recall of an olfactory threat memory only if contextual cues are relevant to the threat. Overnight habituation to the context eliminates dorsal hippocampal activation, implying that this area does not directly support cue-dependent threat conditioning. The ventral hippocampus is activated upon recall of olfactory, but not auditory, threat memory regardless of habituation duration. Concurrent activation of the piriform cortex is consistent with its direct connection with the ventral hippocampus. Together, our study suggests a unique role of the ventral hippocampus in olfactory threat conditioning.</p>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139977500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of modularity during development to simplify walking control across multiple steps 在开发过程中优化模块化,简化多个步骤的行走控制
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2024-01-26 DOI: 10.3389/fncir.2023.1340298
Elodie Hinnekens, Bastien Berret, Estelle Morard, Manh-Cuong Do, Marianne Barbu-Roth, Caroline Teulier
{"title":"Optimization of modularity during development to simplify walking control across multiple steps","authors":"Elodie Hinnekens, Bastien Berret, Estelle Morard, Manh-Cuong Do, Marianne Barbu-Roth, Caroline Teulier","doi":"10.3389/fncir.2023.1340298","DOIUrl":"https://doi.org/10.3389/fncir.2023.1340298","url":null,"abstract":"IntroductionWalking in adults relies on a small number of modules, reducing the number of degrees of freedom that needs to be regulated by the central nervous system (CNS). While walking in toddlers seems to also involve a small number of modules when considering averaged or single-step data, toddlers produce a high amount of variability across strides, and the extent to which this variability interacts with modularity remains unclear.MethodsElectromyographic activity from 10 bilateral lower limb muscles was recorded in both adults (<jats:italic>n</jats:italic> = 12) and toddlers (<jats:italic>n</jats:italic> = 12) over 8 gait cycles. Toddlers were recorded while walking independently and while being supported by an adult. This condition was implemented to assess if motor variability persisted with reduced balance constraints, suggesting a potential central origin rather than reliance on peripheral regulations. We used non-negative matrix factorization to model the underlying modular command with the Space-by-Time Decomposition method, with or without averaging data, and compared the modular organization of toddlers and adults during multiple walking strides.ResultsToddlers were more variable in both conditions (i.e. independent walking and supported by an adult) and required significantly more modules to account for their greater stride-by-stride variability. Activations of these modules varied more across strides and were less parsimonious compared to adults, even with diminished balance constraints.DiscussionThe findings suggest that modular control of locomotion evolves between toddlerhood and adulthood as the organism develops and practices. Adults seem to be able to generate several strides of walking with less modules than toddlers. The persistence of variability in toddlers when balance constraints were lowered suggests a link with the ability to explore rather than with corrective mechanisms. In conclusion, the capacity of new walkers to flexibly activate their motor command suggests a broader range of possible actions, though distinguishing between modular and non-modular inputs remains challenging.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139587284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
I like therefore I can, and I can therefore I like: the role of self-efficacy and affect in active inference of allostasis 我喜欢所以我可以,我可以所以我喜欢:自我效能感和情感在主动推断异态中的作用
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2024-01-02 DOI: 10.3389/fncir.2024.1283372
Valery Krupnik
{"title":"I like therefore I can, and I can therefore I like: the role of self-efficacy and affect in active inference of allostasis","authors":"Valery Krupnik","doi":"10.3389/fncir.2024.1283372","DOIUrl":"https://doi.org/10.3389/fncir.2024.1283372","url":null,"abstract":"<p>Active inference (AIF) is a theory of the behavior of information-processing open dynamic systems. It describes them as generative models (GM) generating inferences on the causes of sensory input they receive from their environment. Based on these inferences, GMs generate predictions about sensory input. The discrepancy between a prediction and the actual input results in prediction error. GMs then execute action policies predicted to minimize the prediction error. The free-energy principle provides a rationale for AIF by stipulating that information-processing open systems must constantly minimize their free energy (through suppressing the cumulative prediction error) to avoid decay. The theory of homeostasis and allostasis has a similar logic. Homeostatic set points are expectations of living organisms. Discrepancies between set points and actual states generate stress. For optimal functioning, organisms avoid stress by preserving homeostasis. Theories of AIF and homeostasis have recently converged, with AIF providing a formal account for homeo- and allostasis. In this paper, we present bacterial chemotaxis as molecular AIF, where mutual constraints by extero- and interoception play an essential role in controlling bacterial behavior supporting homeostasis. Extending this insight to the brain, we propose a conceptual model of the brain homeostatic GM, in which we suggest partition of the brain GM into <italic>cognitive and physiological homeostatic</italic> GMs. We outline their mutual regulation as well as their integration based on the free-energy principle. From this analysis, affect and self-efficacy emerge as the main regulators of the cognitive homeostatic GM. We suggest fatigue and depression as target neurocognitive phenomena for studying the neural mechanisms of such regulation.</p>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139517139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信