Frontiers in Neural Circuits最新文献

筛选
英文 中文
In vivo recordings in freely behaving mice using independent silicon probes targeting multiple brain regions 使用针对多个脑区的独立硅探针对自由行为小鼠进行体内记录
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2023-12-22 DOI: 10.3389/fncir.2023.1293620
Emanuel Ferreira-Fernandes, Mariana Laranjo, Tiago Reis, Bárbara Canijo, Pedro A. Ferreira, Pedro Martins, João Vilarinho, Mahmoud Tavakoli, Carolina Kunicki, J. Peça
{"title":"In vivo recordings in freely behaving mice using independent silicon probes targeting multiple brain regions","authors":"Emanuel Ferreira-Fernandes, Mariana Laranjo, Tiago Reis, Bárbara Canijo, Pedro A. Ferreira, Pedro Martins, João Vilarinho, Mahmoud Tavakoli, Carolina Kunicki, J. Peça","doi":"10.3389/fncir.2023.1293620","DOIUrl":"https://doi.org/10.3389/fncir.2023.1293620","url":null,"abstract":"In vivo recordings in freely behaving animals are crucial to understand the neuronal circuit basis of behavior. Although current multi-channel silicon probes provide unparalleled sampling density, the study of interacting neuronal populations requires the implantation of multiple probes across different regions of the brain. Ideally, these probes should be independently adjustable, to maximize the yield, and recoverable, to mitigate costs. In this work, we describe the implementation of a miniaturized 3D-printed headgear system for chronic in vivo recordings in mice using independently movable silicon probes targeting multiple brain regions. We successfully demonstrated the performance of the headgear by simultaneously recording the neuronal activity in the prelimbic cortex and dorsal hippocampus. The system proved to be sturdy, ensuring high-quality stable recordings and permitted reuse of the silicon probes, with no observable interference in mouse innate behaviors.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138945348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural basis for behavioral plasticity during the parental life-stage transition in mice 小鼠亲代生命阶段转换过程中行为可塑性的神经基础
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2023-12-15 DOI: 10.3389/fncir.2023.1340497
Kazunari Miyamichi
{"title":"Neural basis for behavioral plasticity during the parental life-stage transition in mice","authors":"Kazunari Miyamichi","doi":"10.3389/fncir.2023.1340497","DOIUrl":"https://doi.org/10.3389/fncir.2023.1340497","url":null,"abstract":"<p>Parental care plays a crucial role in the physical and mental well-being of mammalian offspring. Although sexually naïve male mice, as well as certain strains of female mice, display aggression toward pups, they exhibit heightened parental caregiving behaviors as they approach the time of anticipating their offspring. In this Mini Review, I provide a concise overview of the current understanding of distinct limbic neural types and their circuits governing both aggressive and caregiving behaviors toward infant mice. Subsequently, I delve into recent advancements in the understanding of the molecular, cellular, and neural circuit mechanisms that regulate behavioral plasticity during the transition to parenthood, with a specific focus on the sex steroid hormone estrogen and neural hormone oxytocin. Additionally, I explore potential sex-related differences and highlight some critical unanswered questions that warrant further investigation.</p>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139475379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational components of visual predictive coding circuitry 视觉预测编码电路的计算元件
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2023-12-13 DOI: 10.3389/fncir.2023.1254009
Stewart Shipp
{"title":"Computational components of visual predictive coding circuitry","authors":"Stewart Shipp","doi":"10.3389/fncir.2023.1254009","DOIUrl":"https://doi.org/10.3389/fncir.2023.1254009","url":null,"abstract":"<p>If a full visual percept can be said to be a ‘hypothesis’, so too can a neural ‘prediction’ – although the latter addresses one particular component of image content (such as 3-dimensional organisation, the interplay between lighting and surface colour, the future trajectory of moving objects, and so on). And, because processing is hierarchical, predictions generated at one level are conveyed in a backward direction to a lower level, seeking to predict, in fact, the neural activity at that prior stage of processing, and learning from errors signalled in the opposite direction. This is the essence of ‘predictive coding’, at once an algorithm for information processing and a theoretical basis for the nature of operations performed by the cerebral cortex. Neural models for the implementation of predictive coding invoke specific functional classes of neuron for generating, transmitting and receiving predictions, and for producing reciprocal error signals. Also a third general class, ‘precision’ neurons, tasked with regulating the magnitude of error signals contingent upon the confidence placed upon the prediction, i.e., the reliability and behavioural utility of the sensory data that it predicts. So, what is the ultimate source of a ‘prediction’? The answer is multifactorial: knowledge of the current environmental context and the immediate past, allied to memory and lifetime experience of the way of the world, doubtless fine-tuned by evolutionary history too. There are, in consequence, numerous potential avenues for experimenters seeking to manipulate subjects’ expectation, and examine the neural signals elicited by surprising, and less surprising visual stimuli. This review focuses upon the predictive physiology of mouse and monkey visual cortex, summarising and commenting on evidence to date, and placing it in the context of the broader field. It is concluded that predictive coding has a firm grounding in basic neuroscience and that, unsurprisingly, there remains much to learn.</p>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139398662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The corticofugal oscillatory modulation of the cochlear receptor during auditory and visual attention is preserved in tinnitus 耳鸣患者在听觉和视觉注意力集中时耳蜗受体的皮质振荡调节功能得以保留
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2023-12-08 DOI: 10.3389/fncir.2023.1301962
Rodrigo Donoso-San Martín, Alexis Leiva, Constantino D. Dragicevic, Vicente Medel, Paul H. Delano
{"title":"The corticofugal oscillatory modulation of the cochlear receptor during auditory and visual attention is preserved in tinnitus","authors":"Rodrigo Donoso-San Martín, Alexis Leiva, Constantino D. Dragicevic, Vicente Medel, Paul H. Delano","doi":"10.3389/fncir.2023.1301962","DOIUrl":"https://doi.org/10.3389/fncir.2023.1301962","url":null,"abstract":"<sec><title>Introduction</title><p>The mechanisms underlying tinnitus perception are still under research. One of the proposed hypotheses involves an alteration in top-down processing of auditory activity. Low-frequency oscillations in the delta and theta bands have been recently described in brain and cochlear infrasonic signals during selective attention paradigms in normal hearing controls. Here, we propose that the top-down oscillatory activity observed in brain and cochlear signals during auditory and visual selective attention in normal subjects, is altered in tinnitus patients, reflecting an abnormal functioning of the corticofugal pathways that connect brain circuits with the cochlear receptor.</p></sec><sec><title>Methods</title><p>To test this hypothesis, we used a behavioral task that alternates between auditory and visual top-down attention while we simultaneously measured electroencephalogram (EEG) and distortion-product otoacoustic emissions (DPOAE) signals in 14 tinnitus and 14 control subjects.</p></sec><sec><title>Results</title><p>We found oscillatory activity in the delta and theta bands in cortical and cochlear channels in control and tinnitus patients. There were significant decreases in the DPOAE oscillatory amplitude during the visual attention period as compared to the auditory attention period in tinnitus and control groups. We did not find significant differences when using a between-subjects statistical approach comparing tinnitus and control groups. On the other hand, we found a significant cluster in the delta band in tinnitus when using within-group statistics to compare the difference between auditory and visual DPOAE oscillatory power.</p></sec><sec><title>Conclusion</title><p>These results confirm the presence of top-down infrasonic low-frequency cochlear oscillatory activity in the delta and theta bands in tinnitus patients, showing that the corticofugal suppression of cochlear oscillations during visual and auditory attention in tinnitus patients is preserved.</p></sec>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139096481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topological data analysis of the firings of a network of stochastic spiking neurons 随机尖峰神经元网络跃迁的拓扑数据分析
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2023-12-06 DOI: 10.3389/fncir.2023.1308629
Xiaotian Bai, Chaojun Yu, Jian Zhai
{"title":"Topological data analysis of the firings of a network of stochastic spiking neurons","authors":"Xiaotian Bai, Chaojun Yu, Jian Zhai","doi":"10.3389/fncir.2023.1308629","DOIUrl":"https://doi.org/10.3389/fncir.2023.1308629","url":null,"abstract":"<p>Topological data analysis is becoming more and more popular in recent years. It has found various applications in many different fields, for its convenience in analyzing and understanding the structure and dynamic of complex systems. We used topological data analysis to analyze the firings of a network of stochastic spiking neurons, which can be in a sub-critical, critical, or super-critical state depending on the value of the control parameter. We calculated several topological features regarding Betti curves and then analyzed the behaviors of these features, using them as inputs for machine learning to discriminate the three states of the network.</p>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139093555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An inhibitory glycinergic projection from the cochlear nucleus to the lateral superior olive 从耳蜗核到外侧上橄榄的抑制性甘氨酸能投射
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2023-12-01 DOI: 10.3389/fncir.2023.1307283
Dennis J. Weingarten, Eva Sebastian, Jennifer Winkelhoff, Nadine Patschull-Keiner, Alexander U. Fischer, Simon L. Wadle, Eckhard Friauf, Jan J. Hirtz
{"title":"An inhibitory glycinergic projection from the cochlear nucleus to the lateral superior olive","authors":"Dennis J. Weingarten, Eva Sebastian, Jennifer Winkelhoff, Nadine Patschull-Keiner, Alexander U. Fischer, Simon L. Wadle, Eckhard Friauf, Jan J. Hirtz","doi":"10.3389/fncir.2023.1307283","DOIUrl":"https://doi.org/10.3389/fncir.2023.1307283","url":null,"abstract":"Auditory brainstem neurons in the lateral superior olive (LSO) receive excitatory input from the ipsilateral cochlear nucleus (CN) and inhibitory transmission from the contralateral CN via the medial nucleus of the trapezoid body (MNTB). This circuit enables sound localization using interaural level differences. Early studies have observed an additional inhibitory input originating from the ipsilateral side. However, many of its details, such as its origin, remained elusive. Employing electrical and optical stimulation of afferents in acute mouse brainstem slices and anatomical tracing, we here describe a glycinergic projection to LSO principal neurons that originates from the ipsilateral CN. This inhibitory synaptic input likely mediates inhibitory sidebands of LSO neurons in response to acoustic stimulation.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-species conservation in the regulation of parvalbumin by perineuronal nets 神经元周围网对副白蛋白的跨物种调控保护
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2023-11-29 DOI: 10.3389/fncir.2023.1297643
Angela S. Wang, Xinghaoyun Wan, Daria-Salina Storch, Vivian Y. Li, Gilles Cornez, Jacques Balthazart, J. Miguel Cisneros-Franco, Etienne de Villers-Sidani, Jon T. Sakata
{"title":"Cross-species conservation in the regulation of parvalbumin by perineuronal nets","authors":"Angela S. Wang, Xinghaoyun Wan, Daria-Salina Storch, Vivian Y. Li, Gilles Cornez, Jacques Balthazart, J. Miguel Cisneros-Franco, Etienne de Villers-Sidani, Jon T. Sakata","doi":"10.3389/fncir.2023.1297643","DOIUrl":"https://doi.org/10.3389/fncir.2023.1297643","url":null,"abstract":"<p>Parvalbumin (PV) neurons play an integral role in regulating neural dynamics and plasticity. Therefore, understanding the factors that regulate PV expression is important for revealing modulators of brain function. While the contribution of PV neurons to neural processes has been studied in mammals, relatively little is known about PV function in non-mammalian species, and discerning similarities in the regulation of PV across species can provide insight into evolutionary conservation in the role of PV neurons. Here we investigated factors that affect the abundance of PV in PV neurons in sensory and motor circuits of songbirds and rodents. In particular, we examined the degree to which perineuronal nets (PNNs), extracellular matrices that preferentially surround PV neurons, modulate PV abundance as well as how the relationship between PV and PNN expression differs across brain areas and species and changes over development. We generally found that cortical PV neurons that are surrounded by PNNs (PV+PNN neurons) are more enriched with PV than PV neurons without PNNs (PV-PNN neurons) across both rodents and songbirds. Interestingly, the relationship between PV and PNN expression in the vocal portion of the basal ganglia of songbirds (Area X) differed from that in other areas, with PV+PNN neurons having lower PV expression compared to PV-PNN neurons. These relationships remained consistent across development in vocal motor circuits of the songbird brain. Finally, we discovered a causal contribution of PNNs to PV expression in songbirds because degradation of PNNs led to a diminution of PV expression in PV neurons. These findings reveal a conserved relationship between PV and PNN expression in sensory and motor cortices and across songbirds and rodents and suggest that PV neurons could modulate plasticity and neural dynamics in similar ways across songbirds and rodents.</p>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138741383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
State-dependent modulation of positive and negative affective valences by a parabrachial nucleus-to-ventral tegmental area pathway in mice 小鼠臂旁核-腹侧被盖区通路对正、负情感价的状态依赖性调节
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2023-11-29 DOI: 10.3389/fncir.2023.1273322
Takashi Nagashima, Kaori Mikami, Suguru Tohyama, Ayumu Konno, Hirokazu Hirai, Ayako M. Watabe
{"title":"State-dependent modulation of positive and negative affective valences by a parabrachial nucleus-to-ventral tegmental area pathway in mice","authors":"Takashi Nagashima, Kaori Mikami, Suguru Tohyama, Ayumu Konno, Hirokazu Hirai, Ayako M. Watabe","doi":"10.3389/fncir.2023.1273322","DOIUrl":"https://doi.org/10.3389/fncir.2023.1273322","url":null,"abstract":"Appropriately responding to various sensory signals in the environment is essential for animal survival. Accordingly, animal behaviors are closely related to external and internal states, which include the positive and negative emotional values of sensory signals triggered by environmental factors. While the lateral parabrachial nucleus (LPB) plays a key role in nociception and supports negative valences, it also transmits signals including positive valences. However, the downstream neuronal mechanisms of positive and negative valences have not been fully explored. In the present study, we investigated the ventral tegmental area (VTA) as a projection target for LPB neurons. Optogenetic activation of LPB-VTA terminals in male mice elicits positive reinforcement in an operant task and induces both avoidance and attraction in a place-conditioning task. Inhibition of glutamic acid decarboxylase (GAD) 65-expressing cells in the VTA promotes avoidance behavior induced by photoactivation of the LPB-VTA pathway. These findings indicate that the LPB-VTA pathway is one of the LPB outputs for the transmission of positive and negative valence signals, at least in part, with GABAergic modification in VTA.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Do we all synch alike? Brain–body-environment interactions in ASD 我们都一样吗?ASD 的脑-体-环境相互作用
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2023-11-27 DOI: 10.3389/fncir.2023.1275896
Shlomit Beker, Sophie Molholm
{"title":"Do we all synch alike? Brain–body-environment interactions in ASD","authors":"Shlomit Beker, Sophie Molholm","doi":"10.3389/fncir.2023.1275896","DOIUrl":"https://doi.org/10.3389/fncir.2023.1275896","url":null,"abstract":"<p>Autism Spectrum Disorder (ASD) is characterized by rigidity of routines and restricted interests, and atypical social communication and interaction. Recent evidence for altered synchronization of neuro-oscillatory brain activity with regularities in the environment and of altered peripheral nervous system function in ASD present promising novel directions for studying pathophysiology and its relationship to ASD clinical phenotype. Human cognition and action are significantly influenced by physiological rhythmic processes that are generated by both the central nervous system (CNS) and the autonomic nervous system (ANS). Normally, perception occurs in a dynamic context, where brain oscillations and autonomic signals synchronize with external events to optimally receive temporally predictable rhythmic information, leading to improved performance. The recent findings on the time-sensitive coupling between the brain and the periphery in effective perception and successful social interactions in typically developed highlight studying the interactions within the brain–body-environment triad as a critical direction in the study of ASD. Here we offer a novel perspective of autism as a case where the temporal dynamics of brain–body-environment coupling is impaired. We present evidence from the literature to support the idea that in autism the nervous system fails to operate in an adaptive manner to synchronize with temporally predictable events in the environment to optimize perception and behavior. This framework could potentially lead to novel biomarkers of hallmark deficits in ASD such as cognitive rigidity and altered social interaction.</p>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138819618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Marine invertebrates: neurons, glia, and neurotransmitters. 社论:海洋无脊椎动物:神经元、神经胶质和神经递质。
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2023-11-14 eCollection Date: 2023-01-01 DOI: 10.3389/fncir.2023.1327991
Tatiana N Olivares-Bañuelos, Arturo Ortega
{"title":"Editorial: Marine invertebrates: neurons, glia, and neurotransmitters.","authors":"Tatiana N Olivares-Bañuelos, Arturo Ortega","doi":"10.3389/fncir.2023.1327991","DOIUrl":"10.3389/fncir.2023.1327991","url":null,"abstract":"","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682776/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138459269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信