Frontiers in Neural Circuits最新文献

筛选
英文 中文
Comparison of orientation encoding across layers within single columns of primate V1 revealed by high-density recordings. 高密度记录显示的灵长类 V1 单列内各层方位编码的比较。
IF 3.4 3区 医学
Frontiers in Neural Circuits Pub Date : 2024-09-23 eCollection Date: 2024-01-01 DOI: 10.3389/fncir.2024.1399571
Shude Zhu, Ruobing Xia, Xiaomo Chen, Tirin Moore
{"title":"Comparison of orientation encoding across layers within single columns of primate V1 revealed by high-density recordings.","authors":"Shude Zhu, Ruobing Xia, Xiaomo Chen, Tirin Moore","doi":"10.3389/fncir.2024.1399571","DOIUrl":"https://doi.org/10.3389/fncir.2024.1399571","url":null,"abstract":"<p><p>Primary visual cortex (V1) has been the focus of extensive neurophysiological investigations, with its laminar organization serving as a crucial model for understanding the functional logic of neocortical microcircuits. Utilizing newly developed high-density, Neuropixels probes, we measured visual responses from large populations of simultaneously recorded neurons distributed across layers of macaque V1. Within single recordings, myriad differences in the functional properties of neuronal subpopulations could be observed. Notably, while standard measurements of orientation selectivity showed only minor differences between laminar compartments, decoding stimulus orientation from layer 4C responses outperformed both superficial and deep layers within the same cortical column. The superior orientation discrimination within layer 4C was associated with greater response reliability of individual neurons rather than lower correlated activity within neuronal populations. Our results underscore the efficacy of high-density electrophysiology in revealing the functional organization and network properties of neocortical microcircuits within single experiments.</p>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456443/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Criticality and universality in neuronal cultures during “up” and “down” states 神经元培养在 "上升 "和 "下降 "状态下的临界性和普遍性
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2024-09-10 DOI: 10.3389/fncir.2024.1456558
Mohammad Yaghoubi, Javier G. Orlandi, Michael A. Colicos, Jörn Davidsen
{"title":"Criticality and universality in neuronal cultures during “up” and “down” states","authors":"Mohammad Yaghoubi, Javier G. Orlandi, Michael A. Colicos, Jörn Davidsen","doi":"10.3389/fncir.2024.1456558","DOIUrl":"https://doi.org/10.3389/fncir.2024.1456558","url":null,"abstract":"The brain can be seen as a self-organized dynamical system that optimizes information processing and storage capabilities. This is supported by studies across scales, from small neuronal assemblies to the whole brain, where neuronal activity exhibits features typically associated with phase transitions in statistical physics. Such a critical state is characterized by the emergence of scale-free statistics as captured, for example, by the sizes and durations of activity avalanches corresponding to a cascading process of information flow. Another phenomenon observed during sleep, under anesthesia, and in <jats:italic>in vitro</jats:italic> cultures, is that cortical and hippocampal neuronal networks alternate between “up” and “down” states characterized by very distinct firing rates. Previous theoretical work has been able to relate these two concepts and proposed that only up states are critical whereas down states are subcritical, also indicating that the brain spontaneously transitions between the two. Using high-speed high-resolution calcium imaging recordings of neuronal cultures, we test this hypothesis here by analyzing the neuronal avalanche statistics in populations of thousands of neurons during “up” and “down” states separately. We find that both “up” and “down” states can exhibit scale-free behavior when taking into account their intrinsic time scales. In particular, the statistical signature of “down” states is indistinguishable from those observed previously in cultures without “up” states. We show that such behavior can not be explained by network models of non-conservative leaky integrate-and-fire neurons with short-term synaptic depression, even when realistic noise levels, spatial network embeddings, and heterogeneous populations are taken into account, which instead exhibits behavior consistent with previous theoretical models. Similar differences were also observed when taking into consideration finite-size scaling effects, suggesting that the intrinsic dynamics and self-organization mechanisms of these cultures might be more complex than previously thought. In particular, our findings point to the existence of different mechanisms of neuronal communication, with different time scales, acting during either high-activity or low-activity states, potentially requiring different plasticity mechanisms.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142187791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
L-methionine and the L-type Ca2+ channel agonist BAY K 8644 collaboratively contribute to the reduction of depressive-like behavior in mice L-蛋氨酸和 L 型 Ca2+ 通道激动剂 BAY K 8644 共同有助于减少小鼠的抑郁样行为
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2024-08-29 DOI: 10.3389/fncir.2024.1435507
Ershu He, Ruixue Ma, Shanglan Qu, Xiaoye Zheng, Xin Peng, Jieyu Ji, Wenhao Ma, Xueyan Zhang, Ying Li, Hanwei Li, Yanjiao Li, Lijuan Li, Zhiting Gong
{"title":"L-methionine and the L-type Ca2+ channel agonist BAY K 8644 collaboratively contribute to the reduction of depressive-like behavior in mice","authors":"Ershu He, Ruixue Ma, Shanglan Qu, Xiaoye Zheng, Xin Peng, Jieyu Ji, Wenhao Ma, Xueyan Zhang, Ying Li, Hanwei Li, Yanjiao Li, Lijuan Li, Zhiting Gong","doi":"10.3389/fncir.2024.1435507","DOIUrl":"https://doi.org/10.3389/fncir.2024.1435507","url":null,"abstract":"The L-type Ca<jats:sup>2+</jats:sup> channel (LTCC, also known as Cav1,2) is involved in the regulation of key neuronal functions, such as dendritic information integration, cell survival, and neuronal gene expression. Clinical studies have shown an association between L-type calcium channels and the onset of depression, although the precise mechanisms remain unclear. The development of depression results from a combination of environmental and genetic factors. DNA methylation, a significant epigenetic modification, plays a regulatory role in the pathogenesis of psychiatric disorders such as posttraumatic stress disorder (PTSD), depression, and autism. In our study, we observed reduced Dnmt3a expression levels in the hippocampal DG region of mice with LPS-induced depression compared to control mice. The antidepressant Venlafaxine was able to increase Dnmt3a expression levels. Conversely, Bay K 8644, an agonist of the L-type Ca<jats:sup>2+</jats:sup> channel, partially ameliorated depression-like behaviors but did not elevate Dnmt3a expression levels. Furthermore, when we manipulated DNA methylation levels during Bay K 8644 intervention in depression-like models, we found that enhancing the expression of Dnmt3a could improve LPS-induced depression/anxiety-like behaviors, while inhibiting DNA methylation exacerbated anxiety-like behaviors, the combined use of BAY K 8644 and L-methionine can better improve depressive-like behavior. These findings indicate that DNA methylation plays a role in the regulation of depression-like behaviors by the L-type Ca<jats:sup>2+</jats:sup> channel, and further research is needed to elucidate the interactions between DNA methylation and L-type Ca<jats:sup>2+</jats:sup> channels.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142187792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vasopressin differentially modulates the excitability of rat olfactory bulb neuron subtypes 血管加压素以不同方式调节大鼠嗅球神经元亚型的兴奋性
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2024-08-29 DOI: 10.3389/fncir.2024.1448592
Hajime Suyama, Gaia Bianchini, Michael Lukas
{"title":"Vasopressin differentially modulates the excitability of rat olfactory bulb neuron subtypes","authors":"Hajime Suyama, Gaia Bianchini, Michael Lukas","doi":"10.3389/fncir.2024.1448592","DOIUrl":"https://doi.org/10.3389/fncir.2024.1448592","url":null,"abstract":"Vasopressin (VP) plays a crucial role in social memory even at the level of the olfactory bulb (OB), where OB VP cells are activated during social interactions. However, it remains unclear how VP modulates olfactory processing to enable enhanced discrimination of very similar odors, e.g., rat body odors. Thus far, it has been shown that VP reduces firing rates in mitral cells (MCs) during odor presentation <jats:italic>in vivo</jats:italic> and decreases the amplitudes of olfactory nerve-evoked excitatory postsynaptic potentials (ON-evoked EPSPs) in external tufted cells <jats:italic>in vitro</jats:italic>. We performed whole-cell patch-clamp recordings and population Ca<jats:sup>2+</jats:sup> imaging on acute rat OB slices. We recorded ON-evoked EPSPs as well as spontaneous inhibitory postsynaptic currents (IPSCs) from two types of projection neurons: middle tufted cells (mTCs) and MCs. VP bath application reduced the amplitudes of ON-evoked EPSPs and the frequencies of spontaneous IPSCs in mTCs but did not change those in MCs. Therefore, we analyzed ON-evoked EPSPs in inhibitory interneurons, i.e., periglomerular cells (PGCs) and granule cells (GCs), to search for the origin of increased inhibition in mTCs. However, VP did not increase the amplitudes of evoked EPSPs in either type of interneurons. We next performed two-photon population Ca<jats:sup>2+</jats:sup> imaging in the glomerular layer and the superficial GC layer of responses to stronger ON stimulation than during patch-clamp experiments that should evoke action potentials in the measured cells. We observed that VP application increased ON-evoked Ca<jats:sup>2+</jats:sup> influx in juxtaglomerular cells and GC somata. Thus, our findings indicate inhibition by VP on projection neurons via strong ON input-mediated inhibitory interneuron activity. This neural modulation could improve representation of odors, hence, better discriminability of similar odors, e.g., conspecific body odors.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142187789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bilateral and symmetric glycinergic and glutamatergic projections from the LSO to the IC in the CBA/CaH mouse CBA/CaH小鼠从LSO到IC的双侧和对称甘氨酸能和谷氨酸能投射
IF 3.4 3区 医学
Frontiers in Neural Circuits Pub Date : 2024-08-09 DOI: 10.3389/fncir.2024.1430598
Isabella R. Williams, D. Ryugo
{"title":"Bilateral and symmetric glycinergic and glutamatergic projections from the LSO to the IC in the CBA/CaH mouse","authors":"Isabella R. Williams, D. Ryugo","doi":"10.3389/fncir.2024.1430598","DOIUrl":"https://doi.org/10.3389/fncir.2024.1430598","url":null,"abstract":"Auditory space has been conceptualized as a matrix of systematically arranged combinations of binaural disparity cues that arise in the superior olivary complex (SOC). The computational code for interaural time and intensity differences utilizes excitatory and inhibitory projections that converge in the inferior colliculus (IC). The challenge is to determine the neural circuits underlying this convergence and to model how the binaural cues encode location. It has been shown that midbrain neurons are largely excited by sound from the contralateral ear and inhibited by sound leading at the ipsilateral ear. In this context, ascending projections from the lateral superior olive (LSO) to the IC have been reported to be ipsilaterally glycinergic and contralaterally glutamatergic. This study used CBA/CaH mice (3–6 months old) and applied unilateral retrograde tracing techniques into the IC in conjunction with immunocytochemical methods with glycine and glutamate transporters (GlyT2 and vGLUT2, respectively) to analyze the projection patterns from the LSO to the IC. Glycinergic and glutamatergic neurons were spatially intermixed within the LSO, and both types projected to the IC. For GlyT2 and vGLUT2 neurons, the average percentage of ipsilaterally and contralaterally projecting cells was similar (ANOVA, p = 0.48). A roughly equal number of GlyT2 and vGLUT2 neurons did not project to the IC. The somatic size and shape of these neurons match the descriptions of LSO principal cells. A minor but distinct population of small (< 40 μm2) neurons that labeled for GlyT2 did not project to the IC; these cells emerge as candidates for inhibitory local circuit neurons. Our findings indicate a symmetric and bilateral projection of glycine and glutamate neurons from the LSO to the IC. The differences between our results and those from previous studies suggest that species and habitat differences have a significant role in mechanisms of binaural processing and highlight the importance of research methods and comparative neuroscience. These data will be important for modeling how excitatory and inhibitory systems converge to create auditory space in the CBA/CaH mouse.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141925291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Olfactory neurogenesis plays different parts at successive stages of life, implications for mental health 嗅觉神经发生在人生不同阶段扮演不同角色,对心理健康的影响
IF 3.4 3区 医学
Frontiers in Neural Circuits Pub Date : 2024-08-08 DOI: 10.3389/fncir.2024.1467203
Jules Dejou, N. Mandairon, Anne Didier
{"title":"Olfactory neurogenesis plays different parts at successive stages of life, implications for mental health","authors":"Jules Dejou, N. Mandairon, Anne Didier","doi":"10.3389/fncir.2024.1467203","DOIUrl":"https://doi.org/10.3389/fncir.2024.1467203","url":null,"abstract":"The olfactory bulb is a unique site of continuous neurogenesis, primarily generating inhibitory interneurons, a process that begins at birth and extends through infancy and adulthood. This review examines the characteristics of olfactory bulb neurogenesis, focusing on granule cells, the most numerous interneurons, and how their age and maturation affect their function. Adult-born granule cells, while immature, contribute to the experience-dependent plasticity of the olfactory circuit by enabling structural and functional synaptic changes. In contrast, granule cells born early in life form the foundational elements of the olfactory bulb circuit, potentially facilitating innate olfactory information processing. The implications of these neonatal cells on early life olfactory memory and their impact on adult perception, particularly in response to aversive events and susceptibility to emotional disorders, warrant further investigation.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141927675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances and applications of human brain models 人脑模型的最新进展和应用
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2024-08-05 DOI: 10.3389/fncir.2024.1453958
Kaneyasu Nishimura, Hironobu Osaki, Kotaro Tezuka, Daisuke Nakashima, Shintaro Numata, Yoshito Masamizu
{"title":"Recent advances and applications of human brain models","authors":"Kaneyasu Nishimura, Hironobu Osaki, Kotaro Tezuka, Daisuke Nakashima, Shintaro Numata, Yoshito Masamizu","doi":"10.3389/fncir.2024.1453958","DOIUrl":"https://doi.org/10.3389/fncir.2024.1453958","url":null,"abstract":"Recent advances in human pluripotent stem cell (hPSC) technologies have prompted the emergence of new research fields and applications for human neurons and brain organoids. Brain organoids have gained attention as an <jats:italic>in vitro</jats:italic> model system that recapitulates the higher structure, cellular diversity and function of the brain to explore brain development, disease modeling, drug screening, and regenerative medicine. This progress has been accelerated by abundant interactions of brain organoid technology with various research fields. A cross-disciplinary approach with human brain organoid technology offers a higher-ordered advance for more accurately understanding the human brain. In this review, we summarize the status of neural induction in two- and three-dimensional culture systems from hPSCs and the modeling of neurodegenerative diseases using brain organoids. We also highlight the latest bioengineered technologies for the assembly of spatially higher-ordered neural tissues and prospects of brain organoid technology toward the understanding of the potential and abilities of the human brain.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141938528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular tools to capture active neural circuits 捕捉活跃神经回路的分子工具
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2024-07-19 DOI: 10.3389/fncir.2024.1449459
Taichi Onishi, Kenzo Hirose, Takeshi Sakaba
{"title":"Molecular tools to capture active neural circuits","authors":"Taichi Onishi, Kenzo Hirose, Takeshi Sakaba","doi":"10.3389/fncir.2024.1449459","DOIUrl":"https://doi.org/10.3389/fncir.2024.1449459","url":null,"abstract":"To understand how neurons and neural circuits function during behaviors, it is essential to record neuronal activity in the brain <jats:italic>in vivo</jats:italic>. Among the various technologies developed for recording neuronal activity, molecular tools that induce gene expression in an activity-dependent manner have attracted particular attention for their ability to clarify the causal relationships between neuronal activity and behavior. In this review, we summarize recently developed activity-dependent gene expression tools and their potential contributions to the study of neural circuits.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141741616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional relationship between peripheral thermosensation and behavioral thermoregulation 外周热感觉与行为体温调节之间的功能关系
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2024-07-09 DOI: 10.3389/fncir.2024.1435757
Takuto Suito, Makoto Tominaga
{"title":"Functional relationship between peripheral thermosensation and behavioral thermoregulation","authors":"Takuto Suito, Makoto Tominaga","doi":"10.3389/fncir.2024.1435757","DOIUrl":"https://doi.org/10.3389/fncir.2024.1435757","url":null,"abstract":"Thermoregulation is a fundamental mechanism for maintaining homeostasis in living organisms because temperature affects essentially all biochemical and physiological processes. Effector responses to internal and external temperature cues are critical for achieving effective thermoregulation by controlling heat production and dissipation. Thermoregulation can be classified as physiological, which is observed primarily in higher organisms (homeotherms), and behavioral, which manifests as crucial physiological functions that are conserved across many species. Neuronal pathways for physiological thermoregulation are well-characterized, but those associated with behavioral regulation remain unclear. Thermoreceptors, including Transient Receptor Potential (TRP) channels, play pivotal roles in thermoregulation. Mammals have 11 thermosensitive TRP channels, the functions for which have been elucidated through behavioral studies using knockout mice. Behavioral thermoregulation is also observed in ectotherms such as the fruit fly, <jats:italic>Drosophila melanogaster</jats:italic>. Studies of <jats:italic>Drosophila</jats:italic> thermoregulation helped elucidate significant roles for thermoreceptors as well as regulatory actions of membrane lipids in modulating the activity of both thermosensitive TRP channels and thermoregulation. This review provides an overview of thermosensitive TRP channel functions in behavioral thermoregulation based on results of studies involving mice or <jats:italic>Drosophila melanogaster</jats:italic>.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141572479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early-life maturation of the somatosensory cortex: sensory experience and beyond 体感皮层的早期成熟:感觉体验及其他
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2024-07-08 DOI: 10.3389/fncir.2024.1430783
Ijeoma Nwabudike, Alicia Che
{"title":"Early-life maturation of the somatosensory cortex: sensory experience and beyond","authors":"Ijeoma Nwabudike, Alicia Che","doi":"10.3389/fncir.2024.1430783","DOIUrl":"https://doi.org/10.3389/fncir.2024.1430783","url":null,"abstract":"Early life experiences shape physical and behavioral outcomes throughout lifetime. Sensory circuits are especially susceptible to environmental and physiological changes during development. However, the impact of different types of early life experience are often evaluated in isolation. In this mini review, we discuss the specific effects of postnatal sensory experience, sleep, social isolation, and substance exposure on barrel cortex development. Considering these concurrent factors will improve understanding of the etiology of atypical sensory perception in many neuropsychiatric and neurodevelopmental disorders.","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141572578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信