{"title":"Differential modulation of photosystem II photochemical efficiency in six C<sub>4</sub> xero-halophytes.","authors":"Ahmad Zia, Salman Gulzar, Gerald E Edwards","doi":"10.1071/FP24060","DOIUrl":"https://doi.org/10.1071/FP24060","url":null,"abstract":"<p><p>Xero-halophytes are the salt-tolerant plants of dry habitats that adapt efficient strategies to endure extreme salt and water fluctuations. This study elucidated the adaptations related to PSII photochemistry, photoprotection, and photoinhibition in six C4 xero-halophytes (Atriplex stocksii , Haloxylon stocksii , Salsola imbricata, Suaeda fruticosa, Desmostachya bipinnata , and Saccharum griffithii ) grown in their native habitats. Chlorophyll a fluorescence quenching measurements suggested that S. imbricata and H. stocksii maintained efficient PSII photochemistry by downregulating heat dissipation and keeping a high fraction of open PSII centres that indicates plastoquinone (PQ) pool oxidation. Fluorescence induction kinetics revealed that S. imbricata demonstrated the highest performance index of PSII excitation to the reduction of end electron acceptors. S. fruticosa sustained photochemical efficiency through enhanced dissipation of excess energy and a low fraction of open PSII centres, indicating PQ reduced state. The large light-harvesting antenna size, deduced from the chlorophyll a /b ratio in S. fruticosa apparently led to the superior performance index of PSII excitation to the reduction of intersystem electron carriers. A. stocksii retained more open PSII centres with responsive non-photochemical quenching to safely dissipate excess energy. Despite maintaining the highest pigment contents and stoichiometry, A. stocksii remained lowest in both performance indices. The grass species D. bipinnata and S. griffithii kept fewer PSII centres open during photoinhibition, as evidenced by downregulation of PSII operating efficiency. The results provide insights into the differential modulation of PSII photochemical efficiency through dynamic control of photoprotective energy dissipation, PQ pool redox states, and photoinhibitory shutdown in these xero-halophytes.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeroen D M Schreel, Guillaume Théroux-Rancourt, Adam B Roddy
{"title":"Linking structure to function: the connection between mesophyll structure and intrinsic water use efficiency.","authors":"Jeroen D M Schreel, Guillaume Théroux-Rancourt, Adam B Roddy","doi":"10.1071/FP24150","DOIUrl":"10.1071/FP24150","url":null,"abstract":"<p><p>Climate change-driven drought events are becoming unescapable in an increasing number of areas worldwide. Understanding how plants are able to adapt to these changing environmental conditions is a non-trivial challenge. Physiologically, improving a plant's intrinsic water use efficiency (WUEi ) will be essential for plant survival in dry conditions. Physically, plant adaptation and acclimatisation are constrained by a plant's anatomy. In other words, there is a strong link between anatomical structure and physiological function. Former research predominantly focused on using 2D anatomical measurements to approximate 3D structures based on the assumption of ideal shapes, such as spherical spongy mesophyll cells. As a result of increasing progress in 3D imaging technology, the validity of these assumptions is being assessed, and recent research has indicated that these approximations can contain significant errors. We suggest to invert the workflow and use the less common 3D assessments to provide corrections and functions for the more widely available 2D assessments. By combining these 3D and corrected 2D anatomical assessments with physiological measurements of WUEi , our understanding of how a plant's physical adaptation affects its function will increase and greatly improve our ability to assess plant survival.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aldineia Buss, Wesley Costa Silva, Vladimir Eliodoro Costa, Ana Silvia Franco Pinheiro Moreira
{"title":"How the vertical gradient of light in the understorey and water seasonality affect leaf traits of <i>Vanilla phaeantha</i> (Orchidaceae), a crassulacean acid metabolism (CAM) hemiephyte.","authors":"Aldineia Buss, Wesley Costa Silva, Vladimir Eliodoro Costa, Ana Silvia Franco Pinheiro Moreira","doi":"10.1071/FP24132","DOIUrl":"https://doi.org/10.1071/FP24132","url":null,"abstract":"<p><p>Structural and physiological leaf traits and their plasticity were compared in the hemiepiphyte Vanilla phaeantha . This species grows along a phorophyte reaching different understorey positions and exhibiting diverse responses to environment changes. We analysed three height strata above the ground, establishing a light gradient, and considering seasonal water fluctuations. The upper leaves had higher area and mass and were less pigmented. The dry season induced a reduction of approximately 2h of stomatal opening over the diel 24h crassulacean acid metabolism (CAM) cycle in the leaves at all understorey positions. The leaves more exposed to sunlight were larger with higher titratable acidity during the rainy season, while the leaves near the ground maintained the same rates of stomatal conductance and nocturnal acidification between seasons, with lowest values of carbon isotopes in the rainy season. Our research showed that some structural leaf traits (such as specific leaf mass, biomass, and saturated water content) are sensitive to variation in understorey position. In contrast, other physiological traits (stomatal conductance, transpiration, and fluorescence parameters) are more sensitive to seasonal variations. The results are a novelty in assessing the variation of CAM along the same plant in a height gradient and under field conditions.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142462369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Glycoside hydrolases reveals their differential role in response to drought and salt stress in potato (Solanum tuberosum)","authors":"Aiana, Hanny Chauhan, Kashmir Singh","doi":"10.1071/fp24114","DOIUrl":"https://doi.org/10.1071/fp24114","url":null,"abstract":"<p>Glycoside hydrolases (GHs) are important in metabolic processes involving diverse carbohydrate-based substances found inside plant tissues. Potatoes (<i>Solanum tuberosum</i>) are rich in starchy carbohydrates, suggesting the role of GHs in their metabolic pathways. In this study, we examine the GH superfamily in potato where 366 potential GHs were identified using a similarity search method. Genes were subjected to further characterisation to gain insights into their structural composition, functional properties and distribution patterns across tissue types. Several <i>in silico</i> methodologies were also employed to investigate the physicochemical features, conserved motifs, chromosomal mapping, duplication events, syntenic links with tomato (<i>Solanum lycopersicum</i>), subcellular localisations, secondary structures and phylogenetic relationships. <i>Cis</i>-elements in <i>StGHs</i> revealed that the promoters of <i>StGHs</i> contain <i>cis</i>-elements that are responsive to phytohormones that are involved in plant growth and development, and are associated with stress responses. RNA-seq data identified significant changes in expression levels of <i>GH16, GH17</i>, <i>GH18</i>, <i>GH19</i> and <i>GH28</i> members under stress conditions. Expression patterns of several GHs were confirmed using real time quantitative PCR in response to stress. <i>StGH16.24</i> expression increased after 3 days of drought stress, whereas <i>StGH16.30</i> continuously increased under salt stress. Potential interactions between potato miRNAs and <i>StGH</i> revealed 393 and 627 interactions under drought and salt stress, respectively. Our findings offer insights into specific functions of GHs in diverse developmental stages and stress-related challenges in potato and other plants.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ismael Piña, Marco Garrido-Salinas, Oscar Seguel, Ismael Opazo, Carlos Faúndez-Urbina, Nicolás Verdugo-Vásquez, Emilio Villalobos-Soublett
{"title":"Coordination between water relations strategy and carbon investment in leaf and stem in six fruit tree species.","authors":"Ismael Piña, Marco Garrido-Salinas, Oscar Seguel, Ismael Opazo, Carlos Faúndez-Urbina, Nicolás Verdugo-Vásquez, Emilio Villalobos-Soublett","doi":"10.1071/FP24008","DOIUrl":"https://doi.org/10.1071/FP24008","url":null,"abstract":"<p><p>The water relation strategy is a key issue in climate change. Given the difficulty of determining water relations strategy, there is a need for simple traits with a solid theoretical basis to estimate it. Traits associated with resource allocation patterns along a 'fast-slow' plant economics spectrum are particularly compelling, reflecting trade-offs between growth rate and carbon allocation. Avocado (Persea americana ), fig tree (Ficus carica ), mandarin (Citrus reticulata ), olive (Olea europaea ), pomegranate (Punica granatum ), and grapevine (Vitis vinifera ) were characterised in terms of iso-anisohydric strategy through stomatal behaviour, water potential at the turgor loss point (TLP), and hydroscape area. Additionally, the association of these metrics with leaf mass per area (LMA) and wood density (WDen) was explored. We observed high coordination between LMA and WDen, and both traits were related to metrics of water relation strategy. More anisohydric species tended to invest more carbon per unit leaf area or unit stem volume, which has implications for hydraulic efficiency and water stress tolerance. WDen and TLP were the most powerful traits in estimating the water relation strategy for six fruit species. These traits are easy to measure, time-cost efficient, and appear central to coordinating multiple traits and behaviours along the water relations strategies.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Augmenting the basis of lodging tolerance in wheat (<i>Triticum aestivum</i>) under natural and simulated conditions.","authors":"Rinki Khobra, Sonia Sheoran, Sindhu Sareen, Braj Kishor Meena, Arvind Kumar, Gyanendra Singh","doi":"10.1071/FP24107","DOIUrl":"https://doi.org/10.1071/FP24107","url":null,"abstract":"<p><p>In wheat (Triticum aestivum ), canopy architecture, culm diameter and stem strength are the key providers of lodging tolerance. To better understand the lodging phenomenon and determine the best linked trait to lodging, a study of lodging resistance was conducted in both artificially-induced and natural lodging conditions. Various morphological, phenological and biochemical traits, such as acid detergent fibre, acid detergent lignin, cellulose and activity of lignin-synthesising enzymes (phenylalanine ammonia lyase and tyrosine ammonia lyase) were recorded. Anatomical features were also examined by light microscopy, using the Wiesner reaction. Genotype C306 demonstrated the highest susceptibility to lodging compared to other varieties due to its limited production of lignin-synthesising enzymes, as well as its taller plant height and narrower culms. The dwarf mutants (DM6 and DM7) have a stronger resistance against lodging because they have thick stems and a short plant canopy structure. The most suitable donors for lodging are semidwarf varieties (HD2967, DPW621-50, DBW88) because they have higher production of lignin and lignin-synthesising enzymes. Grey correlation analysis also confirmed the ability of these three genotypes to tolerate lodging. The genotypes studied were comprehensively ranked. The study also includes an effort towards the standardisation of lodging methodology under artificial conditions.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142139818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification of <i>WRKY</i> transcription factors in <i>Rosa chinensis</i> and analysis of their expression response to alkali stress response.","authors":"Changbing Huang, Wenhui Cheng, Yu Feng, Tongyu Zhang, Taotao Yan, Zhengzhi Jiang, Peilei Cheng","doi":"10.1071/FP23077","DOIUrl":"https://doi.org/10.1071/FP23077","url":null,"abstract":"<p><p>Breeding abiotic stress-tolerant varieties of Rosa chinensis is a paramount goal in horticulture. WRKY transcription factors, pivotal in plant responses to diverse stressors, offer potential targets for enhancing stress resilience in R. chinensis . Using bioinformatics and genomic data, we identified RcWRKY transcription factor genes, characterised their chromosomal distribution, phylogenetic relationships, structural attributes, collinearity, and expression patterns in response to saline stress. Leveraging bidirectional database searches, we pinpointed 66 RcWRKY genes, categorised into three groups. All except RcWRKY60 encoded DNA Binding Domain and Zinc Finger Motif regions of the WRKY domain. Expansion of the RcWRKY gene family was propelled by 19 segmental, and 2 tandem, duplications. We unveiled 41 and 15 RcWRKY genes corresponding to 50 AtWRKY and 17 OsWRKY orthologs respectively, indicating postdivergence expansion. Expression analyses under alkaline stress pinpointed significant alterations in 54 RcWRKY genes. Integration of functional roles from their Arabidopsis orthologs and cis -acting elements within their promoters, along with quantitative reverse transcription PCR validation, underscored the importance of RcWRKY27 and 29 in R. chinensis ' alkaline stress response. These findings offer insights into the biological roles of RcWRKY transcription factors, as well as the regulatory dynamics governing R. chinensis ' growth, development, and stress resilience.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142283320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Safeena Inam, Amna Muhammad, Samra Irum, Nazia Rehman, Aamir Riaz, Muhammad Uzair, Muhammad Ramzan Khan
{"title":"Genome editing for improvement of biotic and abiotic stress tolerance in cereals.","authors":"Safeena Inam, Amna Muhammad, Samra Irum, Nazia Rehman, Aamir Riaz, Muhammad Uzair, Muhammad Ramzan Khan","doi":"10.1071/FP24092","DOIUrl":"https://doi.org/10.1071/FP24092","url":null,"abstract":"<p><p>Global agricultural production must quadruple by 2050 to fulfil the needs of a growing global population, but climate change exacerbates the difficulty. Cereals are a very important source of food for the world population. Improved cultivars are needed, with better resistance to abiotic stresses like drought, salt, and increasing temperatures, and resilience to biotic stressors like bacterial and fungal infections, and pest infestation. A popular, versatile, and helpful method for functional genomics and crop improvement is genome editing. Rapidly developing genome editing techniques including clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) are very important. This review focuses on how CRISPR/Cas9 genome editing might enhance cereals' agronomic qualities in the face of climate change, providing important insights for future applications. Genome editing efforts should focus on improving characteristics that confer tolerance to conditions exacerbated by climate change (e.g. drought, salt, rising temperatures). Improved water usage efficiency, salt tolerance, and heat stress resilience are all desirable characteristics. Cultivars that are more resilient to insect infestations and a wide range of biotic stressors, such as bacterial and fungal diseases, should be created. Genome editing can precisely target genes linked to disease resistance pathways to strengthen cereals' natural defensive systems.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Specific physiological responses to alkaline carbonate stress in rice (<i>Oryza sativa</i>) seedlings: organic acid metabolism and hormone signalling.","authors":"Dan Wang, Miao Xu, Teng-Yuan Xu, Xiu-Yun Lin, Elshan Musazade, Jing-Mei Lu, Wei-Jie Yue, Li-Quan Guo, Yu Zhang","doi":"10.1071/FP23161","DOIUrl":"https://doi.org/10.1071/FP23161","url":null,"abstract":"<p><p>In recent years, alkaline soda soil has stimulated numerous biological research on plants under carbonate stress. Here, we explored the difference in physiological regulation of rice seedlings between saline (NaCl) and alkaline carbonate (NaHCO3 and Na2 CO3 ) stress. The rice seedlings were treated with 40mM NaCl, 40mM NaHCO3 and 20mM Na2 CO3 for 2h, 12h, 24h and 36h, their physiological characteristics were determined, and organic acid biosynthesis and metabolism and hormone signalling were identified by transcriptome analysis. The results showed that alkaline stress caused greater damage to their photosynthetic and antioxidant systems and led to greater accumulation of organic acid, membrane damage, proline and soluble sugar but a decreased jasmonic acid content compared with NaCl stress. Jasmonate ZIM-Domain (JAZ), the probable indole-3-acetic acid-amido synthetase GH3s, and the protein phosphatase type 2Cs that related to the hormone signalling pathway especially changed under Na2 CO3 stress. Further, the organic acid biosynthesis and metabolism process in rice seedlings were modified by both Na2 CO3 and NaHCO3 stresses through the glycolate/glyoxylate and pyruvate metabolism pathways. Collectively, this study provides valuable evidence on carbonate-responsive genes and insights into the different molecular mechanisms of saline and alkaline stresses.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142283322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marwa A Fakhr, Abdelghafar M Abu-Elsaoud, Khadiga Alharbi, Muhammad Zia-Ur-Rehman, Muhammad Usman, Mona H Soliman
{"title":"Investigating the combined effects of β-sitosterol and biochar on nutritional value and drought tolerance in <i>Phaseolus vulgaris</i> under drought stress.","authors":"Marwa A Fakhr, Abdelghafar M Abu-Elsaoud, Khadiga Alharbi, Muhammad Zia-Ur-Rehman, Muhammad Usman, Mona H Soliman","doi":"10.1071/FP24023","DOIUrl":"https://doi.org/10.1071/FP24023","url":null,"abstract":"<p><p>Climate change-induced drought stress decreases crop productivity, but the application of β-sitosterol (BS) and biochar (BC) boosts crop growth and yield. A pot experiment was conducted to examine the effects of the alone and combined application of BS and BC on the growth and yield of Phaseolus vulgaris under drought stress. The synergistic application of BS and BC increased plant height (46.9cm), shoot dry weight (6.9g/pot), and root dry weight (2.5g/pot) of P. vulgaris plants under drought stress. The trend of applied treatments for photosynthetic rate remained as BC (15%)<BS (28%)<BC+BS (32%), compared to drought-stressed control. Similarly, the trend of applied treatments for water use efficiency was BS<BC<BC+BS, compared to drought stress control. The levels of malondialdehyde and hydrogen peroxide were reduced by the combined application of BS and BC under drought stress, measuring at 22.8 and 66.4μmol/gfresh weight, respectively. The combined use of BS and BC significantly alleviated drought stress more than when applied individually. Thus, employing BS and BC together as key agents in drought-stressed common bean plants could promote resilience, fostering growth amid ongoing climate change.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}