Functional Plant Biology最新文献

筛选
英文 中文
Upregulation of TaHSP90A transcripts enhances heat tolerance and increases grain yield in wheat under changing climate conditions. TaHSP90A转录本的上调增强了小麦在气候变化条件下的耐热性并提高了谷物产量。
IF 3 4区 生物学
Functional Plant Biology Pub Date : 2024-02-01 DOI: 10.1071/FP23275
Ali Ammar, Zulfiqar Ali, Muhammad Abu Bakar Saddique, Muhammad Habib-Ur-Rahman, Imtiaz Ali
{"title":"Upregulation of <i>TaHSP90A</i> transcripts enhances heat tolerance and increases grain yield in wheat under changing climate conditions.","authors":"Ali Ammar, Zulfiqar Ali, Muhammad Abu Bakar Saddique, Muhammad Habib-Ur-Rahman, Imtiaz Ali","doi":"10.1071/FP23275","DOIUrl":"10.1071/FP23275","url":null,"abstract":"<p><p>Plants have certain adaptation mechanisms to combat temperature extremes and fluctuations. The heat shock protein (HSP90A) plays a crucial role in plant defence mechanisms under heat stress. In silico analysis of the eight TaHSP90A transcripts showed diverse structural patterns in terms of intron/exons, domains, motifs and cis elements in the promoter region in wheat. These regions contained cis elements related to hormones, biotic and abiotic stress and development. To validate these findings, two contrasting wheat genotypes E-01 (thermo-tolerant) and SHP-52 (thermo-sensitive) were used to evaluate the expression pattern of three transcripts TraesCS2A02G033700.1, TraesCS5B02G258900.3 and TraesCS5D02G268000.2 in five different tissues at five different temperature regimes. Expression of TraesCS2A02G033700.1 was upregulated (2-fold) in flag leaf tissue after 1 and 4h of heat treatment in E-01. In contrast, SHP-52 showed downregulated expression after 1h of heat treatment. Additionally, it was shown that under heat stress, the increased expression of TaHSP90A led to an increase in grain production. As the molecular mechanism of genes involved in heat tolerance at the reproductive stage is mostly unknown, these results provide new insights into the role of TaHSP90A transcripts in developing phenotypic plasticity in wheat to develop heat-tolerant cultivars under the current changing climate scenario.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139702230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meta-analysis of transcriptomic profiles in Dunaliella tertiolecta reveals molecular pathway responses to different abiotic stresses. 邓氏藻转录组的元分析揭示了分子通路对不同非生物胁迫的响应。
IF 3 4区 生物学
Functional Plant Biology Pub Date : 2024-02-01 DOI: 10.1071/FP23002
Bahman Panahi, Mohammad Farhadian, Nahid Hosseinzadeh Gharajeh, Seyyed Abolghasem Mohammadi, Mohammad Amin Hejazi
{"title":"Meta-analysis of transcriptomic profiles in <i>Dunaliella tertiolecta</i> reveals molecular pathway responses to different abiotic stresses.","authors":"Bahman Panahi, Mohammad Farhadian, Nahid Hosseinzadeh Gharajeh, Seyyed Abolghasem Mohammadi, Mohammad Amin Hejazi","doi":"10.1071/FP23002","DOIUrl":"10.1071/FP23002","url":null,"abstract":"<p><p>Microalgae are photosynthetic organisms and a potential source of sustainable metabolite production. However, different stress conditions might affect the production of various metabolites. In this study, a meta-analysis of RNA-seq experiments in Dunaliella tertiolecta was evaluated to compare metabolite biosynthesis pathways in response to abiotic stress conditions such as high light, nitrogen deficiency and high salinity. Results showed downregulation of light reaction, photorespiration, tetrapyrrole and lipid-related pathways occurred under salt stress. Nitrogen deficiency mostly induced the microalgal responses of light reaction and photorespiration metabolism. Phosphoenol pyruvate carboxylase, phosphoglucose isomerase, bisphosphoglycerate mutase and glucose-6-phosphate-1-dehydrogenase (involved in central carbon metabolism) were commonly upregulated under salt, light and nitrogen stresses. Interestingly, the results indicated that the meta-genes (modules of genes strongly correlated) were located in a hub of stress-specific protein-protein interaction (PPI) network. Module enrichment of meta-genes PPI networks highlighted the cross-talk between photosynthesis, fatty acids, starch and sucrose metabolism under multiple stress conditions. Moreover, it was observed that the coordinated expression of the tetrapyrrole intermediated with meta-genes was involved in starch biosynthesis. Our results also showed that the pathways of vitamin B6 metabolism, methane metabolism, ribosome biogenesis and folate biosynthesis responded specifically to different stress factors. Since the results of this study revealed the main pathways underlying the abiotic stress, they might be applied in optimised metabolite production by the microalga Dunaliella in future studies. PRISMA check list was also included in the study.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139930693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assembly and comparative analysis of the complete mitochondrial genome of Pinellia ternata. 三叶松完整线粒体基因组的组装和比较分析。
IF 2.6 4区 生物学
Functional Plant Biology Pub Date : 2024-02-01 DOI: 10.1071/FP23256
Xiao Liu, Qian You, Mengmeng Liu, Chen Bo, Yanfang Zhu, Yongbo Duan, Jianping Xue, Dexin Wang, Tao Xue
{"title":"Assembly and comparative analysis of the complete mitochondrial genome of <i>Pinellia ternata</i>.","authors":"Xiao Liu, Qian You, Mengmeng Liu, Chen Bo, Yanfang Zhu, Yongbo Duan, Jianping Xue, Dexin Wang, Tao Xue","doi":"10.1071/FP23256","DOIUrl":"10.1071/FP23256","url":null,"abstract":"<p><p>Pinellia ternata is an important natural medicinal herb in China. However, it is susceptible to withering when exposed to high temperatures during growth, which limits its tuber production. Mitochondria usually function in stress response. The P . ternata mitochondrial (mt) genome has yet to be explored. Therefore, we integrated PacBio and Illumina sequencing reads to assemble and annotate the mt genome of P . ternata . The circular mt genome of P . ternata is 876 608bp in length and contains 38 protein-coding genes (PCGs), 20 tRNA genes and three rRNA genes. Codon usage, sequence repeats, RNA editing and gene migration from chloroplast (cp) to mt were also examined. Phylogenetic analysis based on the mt genomes of P . ternata and 36 other taxa revealed the taxonomic and evolutionary status of P . ternata . Furthermore, we investigated the mt genome size and GC content by comparing P . ternata with the other 35 species. An evaluation of non-synonymous substitutions and synonymous substitutions indicated that most PCGs in the mt genome underwent negative selection. Our results provide comprehensive information on the P . ternata mt genome, which may facilitate future research on the high-temperature response of P . ternata and provide new molecular insights on the Araceae family.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139691626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of functional kompetitive allele-specific PCR (KASP) markers for selection of drought-tolerant wheat (Triticum aestivum) genotypes. 评估用于筛选耐旱小麦(Triticum aestivum)基因型的功能性等位基因特异性 PCR(KASP)标记。
IF 3 4区 生物学
Functional Plant Biology Pub Date : 2024-01-01 DOI: 10.1071/FP23032
Marya Rubab, Summiya Jannat, Haytham Freeg, Hina Abbas, Kotb A Attia, Sajid Fiaz, Nageen Zahra, Muhammad Uzair, Safeena Inam, Asad Hussain Shah, Itoh Kimiko, Muhammad Kashif Naeem, Muhammad Ramzan Khan
{"title":"Evaluation of functional kompetitive allele-specific PCR (KASP) markers for selection of drought-tolerant wheat (<i>Triticum aestivum</i>) genotypes.","authors":"Marya Rubab, Summiya Jannat, Haytham Freeg, Hina Abbas, Kotb A Attia, Sajid Fiaz, Nageen Zahra, Muhammad Uzair, Safeena Inam, Asad Hussain Shah, Itoh Kimiko, Muhammad Kashif Naeem, Muhammad Ramzan Khan","doi":"10.1071/FP23032","DOIUrl":"10.1071/FP23032","url":null,"abstract":"<p><p>Wheat (Triticum aestivum ) is a major crop around the globe and different techniques are being used for its productivity enhancement. Germplasm evaluation to improve crop productivity mainly depends on accurate phenotyping and selection of genotypes with a high frequency of superior alleles related to the trait of interest. Therefore, applying functional kompetitive allele-specific PCR (KASP) markers for drought-related genes is essential to characterise the genotypes for developing future climate-resilient wheat crop. In this study, eight functional KASP markers and nine morphological traits were employed to evaluate the 40 wheat genotypes for drought tolerance. Morphological traits showed significant variation (P ≤0.05) among the genotypes, except tiller count (TC), fresh root weight (FRW) and dry root weight (DRW). PCA biplot showed that 63.3% phenotypic variation was explained by the first two PCs under control treatment, while 70.8% variation was explained under drought treatment. It also indicated that root length (RL) and primary root (PR) have considerable variations among the genotypes under both treatments and are positively associated with each other. Hence, the findings of this study suggested that both these traits could be used as a selection criterion to classify the drought-tolerant wheat genotypes. KASP genotyping accompanied by morphological data revealed that genotypes Markaz, Bhakar Star, China 2, Aas and Chakwal-50 performed better under drought stress. These outperforming genotypes could be used as parents in developing drought-tolerant wheat genotypes. Hence, KASP genotyping assay for functional genes or significant haplotypes and phenotypic evaluation are prerequisites for a modern breeding program.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9675280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of drought stress and subsequent re-watering on the physiology and nutrition of Pistacia vera and Pistacia atlantica. 干旱胁迫和随后的再浇水对Pistacia vera 和Pistacia atlantica 的生理和营养的影响。
IF 3 4区 生物学
Functional Plant Biology Pub Date : 2024-01-01 DOI: 10.1071/FP23097
Samouna Ben Hamed, Elkadri Lefi, Mohamed Chaieb
{"title":"Effect of drought stress and subsequent re-watering on the physiology and nutrition of <i>Pistacia vera</i> and <i>Pistacia atlantica</i>.","authors":"Samouna Ben Hamed, Elkadri Lefi, Mohamed Chaieb","doi":"10.1071/FP23097","DOIUrl":"10.1071/FP23097","url":null,"abstract":"<p><p>Arid and semi-arid regions are characterised by extreme conditions including drought stress and salinity. These factors profoundly affect the agricultural sector. The objective of this work is to study the effect of drought and re-watering on leaf gas exchange, chlorophyll fluorescence and mineral nutrition in Pistacia vera and Pistacia atlantica . Water stress was applied to individuals of P. vera and P. atlantica for 23days, followed by rehydration for 7days. The results showed a clear reduction in water relations, leaf gas exchange and chlorophyll content in P. vera . Compared to P. vera , P. atlantica maintained less affected water status, total chlorophyll content, leaf gas exchange and chlorophyll fluorescence, stable Zn and Fe proportion, and even elevated K and Cu. The changes in the chlorophyll fluorescence parameter were manifested particularly at the maximal fluorescence (Fm). In contrast, no change was recorded at the minimal fluorescence (F0). After re-hydration, although water status was fully recovered in both species, stomatal conductance (gs), net photosynthesis (A ) and transpiration rate (E ) remain with lower values than the well-watered seedlings. P. atlantica was better adapted to drought stress than P. vera .</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9831713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flooding-adaptive root and shoot traits in rice. 水稻适应洪水的根和芽性状。
IF 3 4区 生物学
Functional Plant Biology Pub Date : 2024-01-01 DOI: 10.1071/FP23226
Chen Lin, Zhao Zhang, Xuwen Shen, Dan Liu, Ole Pedersen
{"title":"Flooding-adaptive root and shoot traits in rice.","authors":"Chen Lin, Zhao Zhang, Xuwen Shen, Dan Liu, Ole Pedersen","doi":"10.1071/FP23226","DOIUrl":"10.1071/FP23226","url":null,"abstract":"<p><p>Wetland plants, including rice (Oryza spp.), have developed multiple functional adaptive traits to survive soil flooding, partial submergence or even complete submergence. In waterlogged soils and under water, diffusion of O2 and CO2 is extremely slow with severe impacts on photosynthesis and respiration. As a response to shallow floods or rising floodwater, several rice varieties, including deepwater rice, elongate their stems to keep their leaves above the water surface so that photosynthesis can occur unhindered during partial submergence. In stark contrast, some other varieties hardly elongate even if they become completely submerged. Instead, their metabolism is reduced to an absolute minimum so that carbohydrates are conserved enabling fast regrowth once the floodwater recedes. This review focuses on the fascinating functional adaptive traits conferring tolerance to soil flooding, partial or complete submergence. We provide a general analysis of these traits focusing on molecular, anatomical and morphological, physiological and ecological levels. Some of these key traits have already been introgressed into modern high-yielding genotypes improving flood tolerance of several cultivars used by millions of farmers in Asia. However, with the ongoing changes in climate, we propose that even more emphasis should be placed on improving flood tolerance of rice by breeding for rice that can tolerate longer periods of complete submergence or stagnant flooding. Such tolerance could be achieved via additional tissues; i.e. aquatic adventitious roots relevant during partial submergence, and leaves with higher underwater photosynthesis caused by a longer gas film retention time.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139089923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glycine max acyl-acyl carrier protein thioesterase B gene overexpression alters lipid content and fatty acid profile of Arabidopsis seeds. 甘氨酸最大酰基载体蛋白硫代酯酶 B 基因过表达改变拟南芥种子的脂质含量和脂肪酸组成。
IF 3 4区 生物学
Functional Plant Biology Pub Date : 2024-01-01 DOI: 10.1071/FP23001
Shihui Zhao, Fan Yan, Yajing Liu, Monan Sun, Ying Wang, Jingwen Li, Xinsheng Zhang, Xuguang Yang, Qingyu Wang
{"title":"<i>Glycine max</i> acyl-acyl carrier protein thioesterase B gene overexpression alters lipid content and fatty acid profile of <i>Arabidopsis</i> seeds.","authors":"Shihui Zhao, Fan Yan, Yajing Liu, Monan Sun, Ying Wang, Jingwen Li, Xinsheng Zhang, Xuguang Yang, Qingyu Wang","doi":"10.1071/FP23001","DOIUrl":"10.1071/FP23001","url":null,"abstract":"<p><p>The fatty acyl-acyl carrier protein thioesterase B (FATB ) gene, involved in the synthesis of saturated fatty acids, plays an important role in the content of fatty acid and composition of seed storage lipids. However, the role of FATB in soybeans (Glycine max ) has been poorly characterised. This paper presents a preliminary bioinformatics and molecular biological investigation of 10 hypothetical FATB members. The results revealed that GmFATB1B , GmFATB2A and GmFATB2B contain many response elements involved in defense and stress responses and meristem tissue expression. Moreover, the coding sequences of GmFATB1A and GmFATB1B were significantly longer than those of the other genes. Their expression varied in different organs of soybean plants during growth, with GmFATB2A and GmFATB2B showing higher relative expression. In addition, subcellular localisation analysis revealed that they were mainly present in chloroplasts. Overexpression of GmFATB1A , GmFATB1B , GmFATB2A and GmFATB2B in transgenic Arabidopsis thaliana plants increased the seed oil content by 10.3%, 12.5%, 7.5% and 8.4%, respectively, compared to that in the wild-type and led to significant increases in palmitic and stearic acid content. Thus, this research has increased our understanding of the FATB family in soybeans and provides a theoretical basis for subsequent improvements in soybean quality.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139478155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melatonin improves drought stress tolerance of pepper (Capsicum annuum) plants via upregulating nitrogen metabolism. 褪黑素通过上调氮代谢提高辣椒(Capsicum annuum)植物对干旱胁迫的耐受性。
IF 3 4区 生物学
Functional Plant Biology Pub Date : 2024-01-01 DOI: 10.1071/FP23060
Cengiz Kaya, Sergey Shabala
{"title":"Melatonin improves drought stress tolerance of pepper (<i>Capsicum annuum</i>) plants via upregulating nitrogen metabolism.","authors":"Cengiz Kaya, Sergey Shabala","doi":"10.1071/FP23060","DOIUrl":"10.1071/FP23060","url":null,"abstract":"<p><p>While ameliorating effects of melatonin (MT) on abiotic stress tolerance in plants are widely reported, the mechanism that underlies this process remains elusive. This work investigated mechanisms by which MT improved drought tolerance in pepper (Capsicum annuum ) plants. A foliar spray of 0.1mM MT treatment was applied to plants grown at 80% and 40% of full field capacity for 3days. Drought stress caused a significant decrease in plant dry weight, relative water content, leaf water potential, PSII efficiency (F v /F m ratio), chlorophyll, soluble protein, leaf and root nitrogen content. Drought increased hydrogen peroxide, malondialdehyde (MDA), nitrate, ammonium, free amino acids, soluble sugars, proline and glycine betaine. Drought also increased peroxidase (POD), glutathione S-transferase (GST) and catalase (CAT) activities, electrolyte leakage (EL) and methylglyoxal (MG). MT pre-treatment reduced oxidative stress and improved nitrogen metabolism by activating various enzymes such as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthetase (GOGAT) and glutamine dehydrogenase (GDH) activities. It also activated enzymes related to the glyoxalase system (Gly I and Gly II) and decreased NO3 - , NH4 + and free amino acid content. Our study suggests a cost-effective and sustainable solution to improve crop productivity in water-limited conditions, by enhancing plant growth, photosynthesis and nitrogen content.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9553889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of drought stress on wheat (Triticum durum) growth and metabolism: insight from GABA shunt, reactive oxygen species and dehydrin genes expression. 干旱胁迫对小麦(Triticum durum)生长和新陈代谢的影响:从 GABA 分流、活性氧和脱水素基因表达的角度看问题。
IF 3 4区 生物学
Functional Plant Biology Pub Date : 2024-01-01 DOI: 10.1071/FP22177
Nisreen A Al-Quraan, Nezar H Samarah, Ayah A Tanash
{"title":"Effect of drought stress on wheat (<i>Triticum durum</i>) growth and metabolism: insight from GABA shunt, reactive oxygen species and dehydrin genes expression.","authors":"Nisreen A Al-Quraan, Nezar H Samarah, Ayah A Tanash","doi":"10.1071/FP22177","DOIUrl":"10.1071/FP22177","url":null,"abstract":"<p><p>Activation of γ-aminobutyric acid (GABA) shunt pathway and upregulation of dehydrins are involved in metabolic homeostasis and protective mechanisms against drought stress. Seed germination percentage, seedling growth, levels of GABA, alanine, glutamate, malondialdehyde (MDA), and the expression of glutamate decarboxylase (GAD ) and dehydrin (dhn and wcor ) genes were examined in post-germination and seedlings of four durum wheat (Triticum durum L.) cultivars in response to water holding capacity levels (80%, 50%, and 20%). Data showed a significant decrease in seed germination percentage, seedling length, fresh and dry weight, and water content as water holding capacity level was decreased. Levels of GABA, alanine, glutamate, and MDA were significantly increased with a negative correlation in post-germination and seedling stages as water holding capacity level was decreased. Prolonged exposure to drought stress increased the GAD expression that activated GABA shunt pathway especially at seedlings growth stage to maintain carbon/nitrogen balance, amino acids and carbohydrates metabolism, and plant growth regulation under drought stress. The mRNA transcripts of dhn and wcor significantly increased as water availability decreased in all wheat cultivars during the post-germination stage presumably to enhance plant tolerance to drought stress by cell membrane protection, cryoprotection of enzymes, and prevention of reactive oxygen species (ROS) accumulation. This study showed that the four durum wheat cultivars responded differently to drought stress especially during the seedling growth stage which might be connected with ROS scavenging systems and the activation of antioxidant enzymes that were associated with activation of GABA shunt pathway and the production of GABA in durum seedlings.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40672609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changes in morphological traits associated with waterlogging, salinity and saline waterlogging in Festuca arundinacea. 黄羊茅淹水、含盐量及盐渍渍害的形态性状变化。
IF 3 4区 生物学
Functional Plant Biology Pub Date : 2024-01-01 DOI: 10.1071/FP23140
Federico Emanuel Menon-Martínez, Agustín Alberto Grimoldi, Gustavo Gabriel Striker, Carla Estefania Di Bella
{"title":"Changes in morphological traits associated with waterlogging, salinity and saline waterlogging in <i>Festuca arundinacea</i>.","authors":"Federico Emanuel Menon-Martínez, Agustín Alberto Grimoldi, Gustavo Gabriel Striker, Carla Estefania Di Bella","doi":"10.1071/FP23140","DOIUrl":"10.1071/FP23140","url":null,"abstract":"<p><p>Rising incidences of waterlogging and salinity, particularly in extensive livestock farming areas, pose increasing challenges to plant growth. This study investigated the morphological growth responses and tolerance of 39 Festuca arundinacea accessions to these stresses, with tolerance quantified by the relative growth rate under stress versus control conditions. Notably, more productive accessions under normal conditions also showed greater stress tolerance. Waterlogging was generally well-tolerated (89-113% of control relative growth rate), without significantly altering growth morphological components as increases in specific leaf area were offset by reductions in leaf weight ratio, maintaining stable leaf area ratios. Conversely, salinity and combined saline waterlogging significantly reduced relative growth rate (56-94% of control), with a substantial variation among accessions. A decrease in specific leaf area, suggestive of thicker leaves, correlated with higher tolerance to salinity and saline waterlogging (r =0.63). In summary, F. arundinacea displays diverse tolerance to these stresses, warranting further study into the adaptive mechanisms. Specific leaf area emerges as a potential selection marker for breeding programs targeting saline and waterlogging tolerance.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138459100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信