Functional Plant Biology最新文献

筛选
英文 中文
Saltbush seedlings (Atriplex spp.) shed border-like cells from closed-type root apical meristems. 盐肤木幼苗(Atriplex spp.)
IF 2.6 4区 生物学
Functional Plant Biology Pub Date : 2024-09-01 DOI: 10.1071/FP24178
Alison R Gill, Rachel A Burton
{"title":"Saltbush seedlings (<i>Atriplex</i> spp.) shed border-like cells from closed-type root apical meristems.","authors":"Alison R Gill, Rachel A Burton","doi":"10.1071/FP24178","DOIUrl":"https://doi.org/10.1071/FP24178","url":null,"abstract":"<p><p>Australian saltbush (Atriplex spp.) survive in exceptionally saline environments and are often used for pasture in semi-arid areas. To investigate the impact of salinity on saltbush root morphology and root exudates, three Australian native saltbush species (Atriplex nummularia , Atriplex amnicola , and Atriplex vesicaria ) were grown in vitro in optimised sterile, semi-hydroponic systems in media supplemented with different concentrations of salt (NaCl). Histological stains and chromatographic techniques were used to characterise the root apical meristem (RAM) type and root exudate composition of the saltbush seedlings. We report that saltbush species have closed-type RAMs, which release border-like cells (BLCs). Monosaccharide content, including glucose and fructose, in the root mucilage of saltbush was found to be uniquely low, suggesting that saltbush may minimise carbon release in polysaccharides of root exudates. Root mucilage also contained notable levels of salt, plus increasing levels of unidentified compounds at peak salinity. Un-esterified homogalacturonan, xyloglucan, and arabinogalactan proteins between and on the surface of BLCs may aid intercellular adhesion. At the highest salinity levels, root cap morphology was altered but root:shoot ratio remained consistent. While questions remain about the identity of some components in saltbush root mucilage other than the key monosaccharides, this new information about root cap morphology and cell surface polysaccharides provides avenues for future research.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142283321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the hidden reserves: allocation strategies associated with underground organs of Cerrado legumes in fire-prone savannas. 揭开隐藏储量的面纱:与易受火灾影响的热带稀树草原中瑟拉多豆科植物地下器官相关的分配策略。
IF 2.6 4区 生物学
Functional Plant Biology Pub Date : 2024-08-01 DOI: 10.1071/FP24104
Bruno Bonadio Cozin, Tassia Caroline Ferreira, L Felipe Daibes, Isabella Fiorini de Carvalho, Beatriz Silvério Dos Santos, Roberta Possas de Souza, Liliane Santos de Camargos, Aline Redondo Martins
{"title":"Unveiling the hidden reserves: allocation strategies associated with underground organs of Cerrado legumes in fire-prone savannas.","authors":"Bruno Bonadio Cozin, Tassia Caroline Ferreira, L Felipe Daibes, Isabella Fiorini de Carvalho, Beatriz Silvério Dos Santos, Roberta Possas de Souza, Liliane Santos de Camargos, Aline Redondo Martins","doi":"10.1071/FP24104","DOIUrl":"https://doi.org/10.1071/FP24104","url":null,"abstract":"<p><p>The synthesis and differential allocation of reserve compounds is an important adaptive mechanism that enables species to resprout in fire-prone ecosystems. The analysis of compound allocation dynamics (differential accumulation of compounds between plant organs) provides insights into plant responses to disturbances. The aim was to quantify reserves in eight legume species from Cerrado open savannas with high fire frequency in order to investigate the patterns of allocation and distribution of compounds between leaves and underground organs, drawing ecophysiological inferences. The species were collected in 'campo sujo' areas of the Cerrado. Leaves and underground organs (xylopodium, taproot tubers) were subjected to physiological analyses. Overall, underground organs were characterised by greater deposits of carbohydrates, mainly soluble sugars, and also with the accumulation of proteins and amino acids. This suggests that nitrogen reserves, as well as carbohydrates, may have an ecophysiological function in response to fire, being allocated to the underground organs. Phenols were mainly evident in leaves, but a morphophysiological pattern was identified, where the two species with taproot tubers tended to concentrate more phenols in the underground portion compared to species with xylopodium, possibly due to functional differences between these organs. Such data allow inferring relevant ecophysiological dynamics in legumes from open savannas.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biochemical and physiological time-of-day variations in early-development phase of Agave mapisaga and Agave salmiana. 龙舌兰(Agave mapisaga)和龙舌兰(Agave salmiana)早期发育阶段的生化和生理日时变化。
IF 2.6 4区 生物学
Functional Plant Biology Pub Date : 2024-08-01 DOI: 10.1071/FP23244
Jesus A Jiménez-Torres, Cecilia B Peña-Valdivia, Baruch Arroyo, Daniel Padilla-Chacón, Rodolfo García
{"title":"Biochemical and physiological time-of-day variations in early-development phase of <i>Agave mapisaga</i> and <i>Agave salmiana</i>.","authors":"Jesus A Jiménez-Torres, Cecilia B Peña-Valdivia, Baruch Arroyo, Daniel Padilla-Chacón, Rodolfo García","doi":"10.1071/FP23244","DOIUrl":"https://doi.org/10.1071/FP23244","url":null,"abstract":"<p><p>This research assesses the aboveground matter accumulation and Fv/Fm ratios (maximum quantum efficiency of PSII) in young plants (5months old) of Agave mapisaga and Agave salmiana grown under greenhouse conditions. This study also evaluated changes in the relative abundance of several different metabolites (sugars, free amino acids, and soluble phenols) during the major daily phases (I, III, and IV) of Crassulacean acid metabolism (CAM). These two species were also investigated to determine if differences in these parameters were evident with respect to their geographical origins (i.e. Metepec, Tlajomulco, and Tlaxiaca, in the state of Hidalgo, Mexico). Differences in shoot mass (0.51-0.82g plant-1 ), water content (75-93%), fructose (4-27μmolg-1 ), glucose (57-73μmolg-1 ), sucrose (10-30μmolg-1 ), free amino acids (5-25μmolg-1 ), soluble phenolics (0.7-3.5μmolg-1 ), and Fv/Fm ratios (0.75-0.80) were evident between plants with different origins. Specifically, at the end of Phase I compared to Phase IV, the results showed significant reductions in dry matter (up to 3.3%) and also reductions in fructose/sucrose. Relative amino acid concentrations were lowest in Phase III (8.8μmolg-1 ) compared to Phase I (16μmolg-1 ). These are novel observations, since all these changes and the biochemical and physiological performance in the CAM phases have not been previously determined in Agave plants differing in their geographical origins.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142106224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Canola (Brassica napus) enhances sodium chloride and sodium ion tolerance by maintaining ion homeostasis, higher antioxidant enzyme activity and photosynthetic capacity fluorescence parameters. 油菜籽(甘蓝)通过维持离子平衡、提高抗氧化酶活性和光合能力荧光参数,增强了对氯化钠和钠离子的耐受性。
IF 2.6 4区 生物学
Functional Plant Biology Pub Date : 2024-08-01 DOI: 10.1071/FP23089
Lupeng Sun, Xiaoqiang Cao, Juncan Du, Yan Wang, Fenghua Zhang
{"title":"Canola (<i>Brassica napus</i>) enhances sodium chloride and sodium ion tolerance by maintaining ion homeostasis, higher antioxidant enzyme activity and photosynthetic capacity fluorescence parameters.","authors":"Lupeng Sun, Xiaoqiang Cao, Juncan Du, Yan Wang, Fenghua Zhang","doi":"10.1071/FP23089","DOIUrl":"https://doi.org/10.1071/FP23089","url":null,"abstract":"<p><p>Under salt stress, plants are forced to take up and accumulate large amounts of sodium (Na+ ) and chloride (Cl- ). Although most studies have focused on the toxic effects of Na+ on plants, Cl- stress is also very important. This study aimed to clarify physiological mechanisms underpinning growth contrasts in canola varieties with different salt tolerance. In hydroponic experiments, 150mM Na+ , Cl- and NaCl were applied to salt-tolerant and sensitive canola varieties. Both NaCl and Na+ treatments inhibited seedling growth. NaCl caused the strongest damage to both canola varieties, and stress damage was more severe at high concentrations of Na+ than Cl- . High Cl- promoted the uptake of ions (potassium K+ , calcium Ca2+ ) and induced antioxidant defence. Salt-tolerant varieties were able to mitigate ion toxicity by maintaining lower Na+ content in the root system for a short period of time, and elevating magnesium Mg2+ content, Mg2+ /Na+ ratio, and antioxidant enzyme activity to improve photosynthetic capacity. They subsequently re-established new K+ /Na+ and Ca2+ /Na+ balances to improve their salt tolerance. High concentrations of Cl salts caused less damage to seedlings than NaCl and Na salts, and Cl- also had a positive role in inducing oxidative stress and responsive antioxidant defence in the short term.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression of heterosis in photosynthetic traits in F1 generation of sorghum (Sorghum bicolor) hybrids and relationship with yield traits. 高粱(Sorghum bicolor)杂交种 F1 代光合性状异质性的表现及其与产量性状的关系。
IF 2.6 4区 生物学
Functional Plant Biology Pub Date : 2024-08-01 DOI: 10.1071/FP24135
Renjie Zhao, Yueqiao Li, Chen Xu, Zhian Zhang, Ziyang Zhou, Yihan Zhou, Zexin Qi
{"title":"Expression of heterosis in photosynthetic traits in F1 generation of sorghum (<i>Sorghum bicolor</i>) hybrids and relationship with yield traits.","authors":"Renjie Zhao, Yueqiao Li, Chen Xu, Zhian Zhang, Ziyang Zhou, Yihan Zhou, Zexin Qi","doi":"10.1071/FP24135","DOIUrl":"https://doi.org/10.1071/FP24135","url":null,"abstract":"<p><p>Heterosis is a crucial factor in enhancing crop yield, particularly in sorghum (Sorghum bicolor ). This research utilised six sorghum restorer lines, six sorghum sterile lines, and 36 hybrid combinations created through the NCII incomplete double-row hybridisation method. We evaluated the performance of F1 generation hybrids for leaf photosynthesis-related parameters, carbon metabolism-related enzymes, and their correlation with yield traits during the flowering stage. Results showed that hybrid sorghum exhibited significant high-parent heterosis in net photosynthetic rate (P n ), transpiration rate (T r ), stomatal conductance (G s ), apparent leaf meat conductance (AMC), ribulose-1,5-bisphosphate (RuBP) carboxylase, phosphoenolpyruvate (PEP) carboxylase, and sucrose phosphate synthase (SPS). Conversely, inter-cellular carbon dioxide concentration (C i ), instantaneous water uses efficiency (WUE), and sucrose synthase (SuSy) displayed mostly negative heterosis. Traits such as 1000-grain weight (TGW), grain weight per spike (GWPS), and dry matter content (DMC) exhibited significant high-parent heterosis, with TGW reaching the highest value of 82.54%. P n demonstrated positive correlations with T r , C i , G s , RuBP carboxylase, PEP carboxylase, GWPS, TGW, and DMC, suggesting that T r , C i , and G s could aid in identifying high-photosynthesis sorghum varieties. Concurrently, P n could help select carbon-efficient sorghum varieties due to its close relationship with yield. Overall, the F1 generation of sorghum hybrids displayed notable heterosis during anthesis. Combined with field performance, P n at athesis can serve as a valuable indicator for early prediction of the yield potential of the F1 generation of sorghum hybrids and for screening carbon-efficient sorghum varieties.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overexpression of forage millet (Setaria italica) SiER genes enhances drought resistance of Arabidopsis thaliana. 牧草小米(Setaria italica)SiER 基因的过表达可增强拟南芥的抗旱性。
IF 2.6 4区 生物学
Functional Plant Biology Pub Date : 2024-08-01 DOI: 10.1071/FP23238
Hanjing Dai, Xiaoyi Huang, Yingrun Wang, Shoujing Zhu, Jieqin Li, Zhaoshi Xu, Jiacheng Zheng
{"title":"Overexpression of forage millet (<i>Setaria italica</i>) <i>SiER</i> genes enhances drought resistance of <i>Arabidopsis thaliana</i>.","authors":"Hanjing Dai, Xiaoyi Huang, Yingrun Wang, Shoujing Zhu, Jieqin Li, Zhaoshi Xu, Jiacheng Zheng","doi":"10.1071/FP23238","DOIUrl":"10.1071/FP23238","url":null,"abstract":"<p><p>ERECTA (ER) is a type of receptor-like kinase that contributes a crucial mission in various aspects of plant development, physiological metabolism, and abiotic stresses responses. This study aimed to explore the functional characteristics of the SiER family genes in millet (Setaria italica L.), focusing on the growth phenotype and drought resistance of Arabidopsis overexpressed SiER4_X1 and SiER1_X4 genes (SiERs ). The results revealed that overexpression of SiER4_X1 and SiER1_X4 genes in Arabidopsis significantly enhanced the leaf number, expanded leaf length and width, further promoted the silique number, length and diameter, and plant height and main stem thickness, ultimately leading to a substantial increase in individual plant biomass. Compared to the wild-type (WT), through simulated drought stress, the expression level of SiER genes was notably upregulated, transgenic Arabidopsis seeds exhibited stronger germination rates and root development; after experiencing drought conditions, the activities of antioxidant enzymes (superoxide dismutase and peroxidase) increased, while the levels of malondialdehyde and relative electrical conductivity decreased. These results indicate that overexpression of SiERs significantly enhanced both biomass production and drought resistance in Arabidopsis . The SiER4_X1 and SiER1_X4 genes emerge as promising candidate genes for improving biomass production and drought resistance in forage plants.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insight into a region of chickpea (Cicer arietinum L.) Chromosome 2 revealed potential candidate genes linked to Foc4 Fusarium wilt resistance. 对鹰嘴豆(Cicer arietinum L.)2 号染色体区域的深入研究揭示了与 Foc4 镰刀霉枯萎病抗性相关的潜在候选基因。
IF 2.6 4区 生物学
Functional Plant Biology Pub Date : 2024-08-01 DOI: 10.1071/FP24068
Karma L Bhutia, Anima Kisku, Bharati Lap, Sangita Sahni, Madhuri Arya, Nangsol D Bhutia, Mahtab Ahmad, Rashmi Chaturvedi, Rajalingam Amutha Sudhan, Vinay Kumar Sharma
{"title":"Insight into a region of chickpea (<i>Cicer arietinum</i> L.) Chromosome 2 revealed potential candidate genes linked to <i>Foc4</i> Fusarium wilt resistance.","authors":"Karma L Bhutia, Anima Kisku, Bharati Lap, Sangita Sahni, Madhuri Arya, Nangsol D Bhutia, Mahtab Ahmad, Rashmi Chaturvedi, Rajalingam Amutha Sudhan, Vinay Kumar Sharma","doi":"10.1071/FP24068","DOIUrl":"https://doi.org/10.1071/FP24068","url":null,"abstract":"<p><p>Two markers on Chromosome 2 of chickpea (Cicer arietinum ) are reportedly associated with resistance to race 4 Fusarium wilt, and are frequently used in breeding. However, the genes in this region that actually confer wilt resistance are unknown. We aimed to characterise them using both in silico approaches and marker trait association (MTA) analysis. Of the 225 protein-encoding genes in this region, 51 showed significant differential expression in two contrasting chickpea genotypes under wilt, with potential involvement in stress response. From a diverse set of 244 chickpea genotypes, two sets of 40 resistant and 40 susceptible genotypes were selected based on disease incidence and amplification pattern of the TA59 marker. All cultivars were further genotyped with 1238 single nucleotide polymorphisms (SNPs) specific to the 51 genes; only seven SNPs were significantly correlated with disease. SNP Ca2_24099002, specific to the LOC101498008 (Transmembrane protein 87A) gene, accounted for the highest phenotypic variance for disease incidence at 16.30%, whereas SNPs Ca2_25166118 and Ca2_27029215, specific to the LOC101494644 (β-glucosidase BoGH3B-like) and LOC101505289 (Putative tRNA pseudouridine synthase) genes, explained 10.51% and 10.50% of the variation, respectively, in the sets with contrasting disease susceptibility. Together with the TA59 and TR19 markers, these SNPs can be used in a chickpea breeding scheme to develop wilt resistance.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of physiological and biochemical responses of chilli (Capsicum annuum) varieties in floating bed cultivation for adaptation to waterlogged areas of Bangladesh. 评估浮床栽培辣椒(Capsicum annuum)品种的生理和生化反应,以适应孟加拉国的水涝地区。
IF 2.6 4区 生物学
Functional Plant Biology Pub Date : 2024-08-01 DOI: 10.1071/FP24084
Md Al-Imran, Dipalok Karmaker, Shawon Mitra, Ishita Haider, Md Alimur Rahman, Subroto K Das
{"title":"Assessment of physiological and biochemical responses of chilli (<i>Capsicum annuum</i>) varieties in floating bed cultivation for adaptation to waterlogged areas of Bangladesh.","authors":"Md Al-Imran, Dipalok Karmaker, Shawon Mitra, Ishita Haider, Md Alimur Rahman, Subroto K Das","doi":"10.1071/FP24084","DOIUrl":"https://doi.org/10.1071/FP24084","url":null,"abstract":"<p><p>Chilli (Capsicum annuum ) is an important spice crop in Bangladesh. This crop is very sensitive to waterlogging. Floating agriculture is an innovative system led by the local people of the southern region of Bangladesh, in which seedlings of vegetables are produced in low-lying areas using different aquatic macrophytes. An experiment was carried out to evaluate the viability of chilli cultivation in waterlogged areas, based on physiological and biochemical responses using floating agriculture. Eight different chilli varieties were subjected to floating agriculture in two different agronomic seasons. A soil-based chilli cultivation system was also trialled, to compare the utility of this method. To evaluate the performance of chilli in floating beds, plant water status, photosynthetic parameters, and leaf tissue concentrations of Na+ , K+ , NO3 - and PO4 3- , chlorophyll, ascorbic acid and proline were assessed. This study shows that macrophytes utilised in floating beds provide favourable conditions for chilli cultivation under waterlogged conditions. Among the different varieties, Sakata 653 in summer and Jhilik in winter responded better than others. As the performance of chilli in the floating agriculture system was satisfactory in comparison with soil-based cultivation, floating agriculture can be an alternative agronomic method for chilli cultivation in waterlogged areas of Bangladesh.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing stress resilience in soybeans (Glycine max): assessing the efficacy of priming and cross-priming for mitigating water deficit and waterlogging effects. 增强大豆(Glycine max)的抗逆性:评估引水和交叉引水在减轻缺水和涝害影响方面的功效。
IF 2.6 4区 生物学
Functional Plant Biology Pub Date : 2024-08-01 DOI: 10.1071/FP24064
Adriano U Bester, Eduardo P Shimoia, Cristiane J Da-Silva, Douglas A Posso, Ivan R Carvalho, Fernanda M Corrêa, Ana C B de Oliveira, Luciano do Amarante
{"title":"Enhancing stress resilience in soybeans (<i>Glycine max</i>): assessing the efficacy of priming and cross-priming for mitigating water deficit and waterlogging effects.","authors":"Adriano U Bester, Eduardo P Shimoia, Cristiane J Da-Silva, Douglas A Posso, Ivan R Carvalho, Fernanda M Corrêa, Ana C B de Oliveira, Luciano do Amarante","doi":"10.1071/FP24064","DOIUrl":"https://doi.org/10.1071/FP24064","url":null,"abstract":"<p><p>Priming enables plants to respond more promptly, minimise damage, and survive subsequent stress events. Here, we aimed to assess the efficacy of priming and cross-priming in mitigating the stress caused by waterlogging and/or dehydration in soybeans (Glycine max ). Soybean plants were cultivated in a greenhouse in plastic pots in which soil moisture was maintained at pot capacity through irrigation. The first stress was applied in plants at the vegetative stage for 5days and involved either dehydration or waterlogging, depending on the treatment. Subsequently, the plants were irrigated or drained and maintained at pot capacity until the second stress. For the second stress, the conditions were repeated in plants at the reproductive stage. We then evaluated the levels of hydrogen peroxide (H2 O2 ), lipid peroxidation, total soluble sugars (TSS), amino acids, proline, and starch, and the activity of antioxidant, fermentative, and aminotransferase enzymes. Under waterlogging and dehydration, priming and cross-priming significantly increased the activity of antioxidant enzymes and the levels of TSS, amino acids, and proline while reducing H2 O2 concentration and lipid peroxidation. Under waterlogging, priming suppressed fermentative activity and increased carbohydrate content. This demonstrates that soybean plants activate their defence systems more promptly when subjected to priming.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive analysis of potato (Solanum tuberosum) PYL genes highlights their role in stress responses. 对马铃薯(Solanum tuberosum)PYL基因的全面分析凸显了它们在应激反应中的作用。
IF 2.6 4区 生物学
Functional Plant Biology Pub Date : 2024-07-01 DOI: 10.1071/FP24094
Shareef Gul, Hameed Gul, Muhammad Shahzad, Ikram Ullah, Ali Shahzad, Shahid Ullah Khan
{"title":"Comprehensive analysis of potato (<i>Solanum tuberosum</i>) <i>PYL</i> genes highlights their role in stress responses.","authors":"Shareef Gul, Hameed Gul, Muhammad Shahzad, Ikram Ullah, Ali Shahzad, Shahid Ullah Khan","doi":"10.1071/FP24094","DOIUrl":"10.1071/FP24094","url":null,"abstract":"<p><p>Abscisic acid (ABA) regulates plant development, seed germination, and stress responses. The PYR1-like (PYL) proteins are essential for ABA signalling. However, the evolution and expression of PYL genes in potato (Solanum tuberosum ) remain poorly understood. Here, we analysed and identified 17 PYL genes in the potato genome, which were categorised into three groups based on phylogenetic analysis. These genes are distributed across nine chromosomes with predicted proteins subcellar localisation primarily in the cytoplasm. These StPYLs revealed conserved exon structures and domains among the groups. Promoter region analysis indicated hormone and stress-related elements in all StPYL s. Protein-protein interactions and microRNA networks predicted that the interactions of StPYLs are crucial components of ABA signalling, underlining their pivotal role in stress management and growth regulation in potato. Expression profiling across different tissues and under various stresses revealed their varied expression pattern. Further, we validated the expression pattern of selected StPYLs through reverse transcription quantitative PCR under drought, salt, and Phytophthora infestans stresses. This revealed consistent upregulation of StPYL6 in these stresses, while StPYL11 exhibited significant downregulation over time. Other genes showed downregulation under drought and salt stresses while upregulation under P. infestans . Overall, our results suggested the potential role of PYL genes in abiotic and biotic stresses.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信