{"title":"Accelerating soybean (<i>Glycine max</i>) leaf growth and stem strength by using natural daylight parameter characteristics.","authors":"Wei He","doi":"10.1071/FP25111","DOIUrl":"https://doi.org/10.1071/FP25111","url":null,"abstract":"<p><p>The ratios of red light (R)/blue light (B) and R/far-red light (Fr) stay relatively constant, which is the unique properties of sunlight. It may be a new way to optimise plant development in artificial lighting conditions. We assayed the potential effects of white light (W), 50% R 50% B (RB), and the unique properties of sunlight (N, R/Fr=1.4, R/Fr=1.1) under 500μmol m-2 s-1 on soybean (Glycine max ) plant growth. Our results showed that total leaf dry weight under N rapidly increased compared with the W and RB treatments from 30days to 60days. Soybean plants under N treatment had higher Rubisco activity and chlorophyll content than the W treatment at 50days. Stem and petiole dry weight under N treatment grew by 454.3% from 30 days to 60days. Compared with W and RB treatments, lignin content in the stems was also 26.9% and 34.5% higher at 50days under N treatment, respectively. N treatment caused 22.9% and 26.2% higher cellulose content than the W and RB treatments at 50days, respectively. N treatment led to 10.5% higher 13 C assimilation than the RB treatment in stems. The spectral combination of sunlight enhanced soybean plant growth and stem strength in artificial light environment.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144559792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Ahsan, Aasma Tufail, Aftab Jamal, Hatim M Al-Yasi, Emanuele Radicetti, Muhammad Ammar Raza, Ali Bakhsh, Mateen Sajid, Zaibun-Nisa Memon, Mohammad Valipour
{"title":"Nitric oxide regulates water status, antioxidant enzymes, nutritional balance, and growth of gazania (<i>Gazania rigens</i>) under drought stress.","authors":"Muhammad Ahsan, Aasma Tufail, Aftab Jamal, Hatim M Al-Yasi, Emanuele Radicetti, Muhammad Ammar Raza, Ali Bakhsh, Mateen Sajid, Zaibun-Nisa Memon, Mohammad Valipour","doi":"10.1071/FP25092","DOIUrl":"https://doi.org/10.1071/FP25092","url":null,"abstract":"<p><p>Nitric oxide (NO) is a bioactive molecule that plays a crucial role in modifying the metabolic systems of plants and activating plant defence systems against environmental stresses such as drought. In this study, we investigated the impacts of exogenously supplemented sodium nitroprusside (SNP), a NO donor, on drought tolerance and physio-biochemical mechanisms mediated by NO that influence nutrient contents and growth of gazania (Gazania rigens ). In a lath house, plants at the four-leaf stage were treated with a foliar spray of SNP (100μM) under two watering conditions: (1) 50% field capacity (drought stress);and (2) 100% field capacity (normal-watering). Results revealed that water deficiency significantly reduced gaseous exchange, chlorophyll pigments, water relations, NO, and proline contents. However, supplementation with NO increased proline levels and antioxidant enzyme activities, leading to improved photosynthesis, water relations, and drought tolerance by reducing lipid peroxidation and hydrogen peroxide levels. Furthermore, enhanced NO levels from SNP treatment promoted the accumulation of essential nutrients resulting in improved growth and biomass in gazania plants. Our results indicated that SNP supplementation increased gaseous exchange (21-53%), chlorophyll pigments (30-70%), water status (12-31%), antioxidant enzyme activities (19-52%), nutrient uptake (22-36%), and flower yield (49%), potentially mitigating the negative effects of water deficiency in gazanias under drought stress. These findings suggest that foliar application of NO donors like SNP could be a practical and eco-friendly strategy to improve drought resilience and productivity of ornamental plants, especially in water-limited urban landscaping and nursery production systems.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144608027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuyu Hao, Yuning Zhai, Piergiorgio Stevanato, Ruixing Li, Lihua Yu, Gui Geng, Lihua Wang, Yao Xu, Jiahui Liu, Yuguang Wang
{"title":"Trehalose application mitigates drought stress in by enhancing photosynthesis, antioxidant activity, and osmolyte production in sugar beet (<i>Betus vulgaris</i>).","authors":"Yuyu Hao, Yuning Zhai, Piergiorgio Stevanato, Ruixing Li, Lihua Yu, Gui Geng, Lihua Wang, Yao Xu, Jiahui Liu, Yuguang Wang","doi":"10.1071/FP24183","DOIUrl":"https://doi.org/10.1071/FP24183","url":null,"abstract":"<p><p>Trehalose is a naturally occurring and non-toxic disaccharide, and has been recognised for its role in mitigating abiotic stress in various plant species. However, its potential to enhance drought resistance in sugar beet (Beta vulgaris ) remains unexplored. This study evaluated the effects of exogenous trehalose application on sugar beet seedlings subjected to drought stress. Trehalose solutions at concentrations of 5, 10, 15, 20, and 30mM were applied foliarly during the stress period. Drought stress markedly reduced key growth and physiological parameters, including dry and fresh biomass, leaf relative water content, root area, leaf area, plant height, chlorophyll content, and root activity, while increasing oxidative stress markers such as superoxide anion and malondialdehyde levels. Among the treatments, 20mM trehalose notably alleviated these adverse effects by improving physiological and biochemical traits. Specifically, it enhanced net photosynthetic rate (Pn), antioxidant enzyme activity, and regulated osmolyte accumulation. These findings suggest that trehalose application can effectively improve sugar beet resilience to drought, offering a promising approach for optimizing sugar beet cultivation in water-limited environments.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144539819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rewaa S Jalal, Abeer S Aloufi, Abeer Al-Andal, Nahaa M Alotaibi, Haneen W Abuauf, Fatimah M Alshehrei, Mohammed Y Refai, Sahar A Alshareef, Alaa A Alnahari, Fatmah O Sefrji, Abeer M Almutrafy, Aala A Abulfaraj
{"title":"<i>Corrigendum to</i>: Enriched enzymes and crosstalking KEGG pathways in the rhizospheric soil fungiome of the wild plant <i>Moringa oleifera</i>.","authors":"Rewaa S Jalal, Abeer S Aloufi, Abeer Al-Andal, Nahaa M Alotaibi, Haneen W Abuauf, Fatimah M Alshehrei, Mohammed Y Refai, Sahar A Alshareef, Alaa A Alnahari, Fatmah O Sefrji, Abeer M Almutrafy, Aala A Abulfaraj","doi":"10.1071/FP24297_CO","DOIUrl":"https://doi.org/10.1071/FP24297_CO","url":null,"abstract":"","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144564735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Die Hu, Zhengyu Wen, Nijat Imin, Kanwarpal S Dhugga, Brent N Kaiser
{"title":"The gibberellic acid responsive GmbHLHm1 transcription factor influences nodule development, nitrogen fixation activity and shoot nitrogen content in soybean (<i>Glycine max</i>).","authors":"Die Hu, Zhengyu Wen, Nijat Imin, Kanwarpal S Dhugga, Brent N Kaiser","doi":"10.1071/FP25045","DOIUrl":"10.1071/FP25045","url":null,"abstract":"<p><p>GmbHLHm1 is a basic Helix-Loop-Helix membrane (bHLHm1) DNA binding transcription factor localized to the symbiosome membrane and nucleus in soybean (Glycine max ) nodules. Overexpression of GmbHLHm1 significantly increased nodule number and size, nitrogen fixation activity,and nitrogen delivery to the shoots. This contrasts with reduced nodule numbers per plant, nitrogen fixation activity and poor plant growth when silenced using RNAi. The promoter of GmbHLHm1 was found to be sensitive to exogenous GA supply, decreasing the level of GUS expression in transformed hairy roots in both nodules and roots and reducing native GmbHLHm1 expression in wild-type nodules. In summary, our study suggests that GmbHLHm1 positively regulates soybean nodulation and nitrogen fixation, and that GA can negatively regulate GmbHLHm1 expression in soybean nodules.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144336451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nasser Abdullah Ghdayer Al Kaabi, Karthishwaran Kandhan, Faisal Hayat, Saif Ali Matar Al Blooshi, Mohamed S Sheteiwy, Mohammed Alyafei
{"title":"Shaping the future of date palm (<i>Phoenix dactylifera</i>) through new genetic improvement strategies.","authors":"Nasser Abdullah Ghdayer Al Kaabi, Karthishwaran Kandhan, Faisal Hayat, Saif Ali Matar Al Blooshi, Mohamed S Sheteiwy, Mohammed Alyafei","doi":"10.1071/FP25021","DOIUrl":"https://doi.org/10.1071/FP25021","url":null,"abstract":"<p><p>Conventional breeding of date palm (Phoenix dactylifera ) is inherently challenging due to its long generation time, dioecious nature, and high genetic heterogeneity. However, current developments in genomics and molecular biology offer promising avenues for accelerating breeding programs, particularly through high-throughput technologies including functional genomics. This article reviews genomic tools such as like CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated protein 9) that may bring significant changes in date palm breeding. The CRISPR-Cas9 system enables scientists to accurately target genomic regions, which helps enhance breeding accuracy by adding advantageous traits and eliminating unfavorable genes through precision editing. Transcriptome and metabolome analyses have also explained the regulation of thousands of differentially expressed genes (DEGs) and metabolic pathways under environmental stress. These studies contribute to enhance the knowledge of stress tolerance mechanisms, which include the secondary metabolic process of flavonoids. Genomic studies illustrating single nucleotide polymorphism (SNP)-based diversity between cultivars from north African and the Arabian Gulf provide new genetic resources for selective breeding. The work relates genome-wide association studies (GWAS) and miRNA profiling to elucidate key regulatory networks involved in fruit development and stress resilience. The integration of such advanced technologies, especially the CRISPR-Cas9 system, is revolutionizing the landscape of date palm breeding, opening new avenues for accelerated development of superior cultivars that meet the needs of modern agriculture.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144233772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multivariate analysis reveals physiological trade-offs and synergies under light and nutrient gradients in the herbaceous species <i>Agastache rugosa</i>.","authors":"Khairul Azree Rosli, Azizah Misran, Latifah Saiful Yazan, Puteri Edaroyati Megat Wahab","doi":"10.1071/FP24323","DOIUrl":"https://doi.org/10.1071/FP24323","url":null,"abstract":"<p><p>Agastache rugosa is an herbaceous species that shows a high degree of phenotypic plasticity in response to light and nutrient gradients, but the coordination among its leaf structural, photosynthetic, and resource use traits remains unexplored in tropical environments. We investigated the functional traits and resource use efficiencies of A. rugosa under four nutrient levels nested within two light levels. Photosynthetic rates increased under high-light, while leaf temperatures remained stable (34-37°C) across treatments, suggesting effective thermoregulation. Unexpectedly, Rubisco content was 22.4% higher under low-light, intermediate nutrient levels, indicating a compensatory mechanism. Water use efficiency increased under high-light, whereas photosynthetic phosphorus and potassium use efficiencies were higher under low-light levels. Principal component analysis showed that light and nutrients explained 71.6% of trait variation, with distinctive clustering of resource use efficiencies. Hierarchical clustering identified three functional trait groups at 90% similarity levels, comprising photosynthetic, nutrient use, and water conservation mechanisms. The species showed tight coordination between CO2 supply and demand, with strong correlations between photosynthetic traits and resource use efficiencies. Our findings demonstrate that A. rugosa employs a suite of adaptive mechanisms to optimise resource acquisition and utilisation across heterogeneous environments, advancing our understanding of plant responses to multiple resource gradients.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144247371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rewaa S Jalal, Abeer S Aloufi, Abeer Al-Andal, Nahaa M Alotaibi, Haneen W Abuauf, Fatimah M Alshehrei, Mohammed Y Refai, Sahar A Alshareef, Alaa A Alnahari, Fatmah O Sefrji, Abeer M Almutrafy, Aala A Abulfaraj
{"title":"Enriched enzymes and crosstalking KEGG pathways in the rhizospheric soil fungiome of the wild plant <i>Moringa oleifera</i>.","authors":"Rewaa S Jalal, Abeer S Aloufi, Abeer Al-Andal, Nahaa M Alotaibi, Haneen W Abuauf, Fatimah M Alshehrei, Mohammed Y Refai, Sahar A Alshareef, Alaa A Alnahari, Fatmah O Sefrji, Abeer M Almutrafy, Aala A Abulfaraj","doi":"10.1071/FP24297","DOIUrl":"10.1071/FP24297","url":null,"abstract":"<p><p>We aimed to identify the genes encoding predominant KEGG enzymes within the rhizospheric soil fungiome of Moringa oleifera . We also aimed to uncover how the rhizospheric fungiome drives intricate biochemical networks that bolster soil health, plant vitality, nutrient cycling, metabolic efficiency and resilience to environmental stress. These findings offer valuable insights that could enhance the efficacy of innovative agricultural practices. Previous research has focused on the role of soil microbiomes, including both bacteriomes and fungiomes, in the ecological dynamics of native and cultivated plants. The rhizospheric fungiome plays a critical role in plant health by suppressing pathogens, decomposing plant residues and facilitating nutrient assimilation in various environmental conditions. Fungal taxa from the phylum Mucoromycota, including Rhizophagus , Mucor ambiguus , Phycomyces blakesleeanus , Mortierella elongata , Absidia glauca , Mucor circinelloides and the taxon Basidiobolus meristosporus from Zoopagomycota, were identified as primary hosts of Kyoto Encyclopedia of Genes and Genomes (KEGG)-enriched enzymes in the rhizospheric soil of M. oleifera . These enzymes participate in crosstalk pathways within KEGG categories such as 'Metabolism', 'Genetic Information Processing', and 'Environmental Information Processing'. These fungal enzymes contribute to the biosynthesis of critical metabolites, including carbamoyl-P, lipoyllysine, acetyl-CoA, isoleucine, valine and nucleotides (dADP, dGDP, dCDP, dUDP) that are essential for cellular functions such as DNA repair, replication and transcription. The symbiotic relationship between these enzymes and plant roots regulates nitrogen levels in the rhizosphere and supports mitochondrial stability. Metabolites also aid in cellular development, membrane metabolism, plant signal transduction and energy metabolism, including fueling the citric acid cycle. Our findings highlight the potential of crosstalking pathways in the rhizospheric fungiome of M. oleifera to enhance energy metabolism and maintain plant cell integrity. We propose that this research can serve as a foundation for advancing sustainable agricultural practices.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144483875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mahmoud Moustafa, Ambreen Maqsood, Muhammad Taimoor Shakeel, Muhammad Naveed Aslam, Khurram Shahzad, Idrees Haider, Uthman Algopishi, Mohammed O Alshaharni, Suliman A Alrumman
{"title":"Flag leaf metabolomics and agronomic performance in rice cultivars under nitrogen-potassium fertilization.","authors":"Mahmoud Moustafa, Ambreen Maqsood, Muhammad Taimoor Shakeel, Muhammad Naveed Aslam, Khurram Shahzad, Idrees Haider, Uthman Algopishi, Mohammed O Alshaharni, Suliman A Alrumman","doi":"10.1071/FP25090","DOIUrl":"https://doi.org/10.1071/FP25090","url":null,"abstract":"<p><p>Rice is a substantial cereal crop and staple food in several world regions. Nitrogen (N) and potassium (K) are key to increasing rice growth and development, ultimately increasing the farmer's net profit. Environmental pollution also results from the careless application of nitrogenous fertilizers for commercial agricultural cultivation. Understanding the metabolic profiling underlying rice nitrogen use efficiency (NUE) is still limited. Therefore screening these two cultivars on a commercial and economic basis is essential, as this would be beneficial in revealing new insights. The flag leaf metabolic expression profiles of two rice cultivars, IRRI 6 (V1) and ksk 434 (V2), collected from low and high NK treatments at anthesis were examined. The optimal doses were applied to 45-day-old transplanted seedlings. Our findings revealed that in response to the NK application, ksk 434 (V2) yielded higher values for morphological traits such as total dry weight, plant height, total number of tillers, rice flag leaf weight, total fresh weight and rice flag leaf area than basmati 385 (V1). Furthermore, N2K2 (114:104kg/ha) application significantly increased NUE, rice grain yield, chlorophyll content and metabolic expression compared to plants treated with N1K1, N3K3 and the control. Twenty-four metabolites related to photosynthetic synthesis were annotated, among which 8-Acetylegelolide, citric acid, methionine, chlorophyll a/b and (S)-2-Aceto-2-hydroxybutanoate were positively correlated with the photosynthetic cycling process. Meanwhile, UDP-glucose, 4-methylcellulose, galactosamine, L-glutamic acid and C5-branched dicarboxylic acid metabolism were positively associated with yield. Furfural, L-piperidine and (S)-2-acetone-2-hydroxybutyric acid were downregulated after nitrogen application in both cultivars compared to control. The optimum dose of fertilizer application also upregulated the expression of NAPDH, ndhA, ndhD, ATP1, psAc, ndhB and rpoB genes in the flag leaf of rice at the heading stage as compared to control plants. In future, multiomics techniques will be performed to identify key genes/pathways involved in N metabolism, that may potentially improve root architecture and increase NUE.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144233762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdurrahman Sami Koca, Vahdettin Çiftçi, Mehmet Zahit Yeken
{"title":"Impact of <i>Helicoverpa armigera</i> Hübner (Lepidoptera: Noctuidae) infestation and wounding on gene expression of defense-related genes and chlorophyll fluorescence in common bean.","authors":"Abdurrahman Sami Koca, Vahdettin Çiftçi, Mehmet Zahit Yeken","doi":"10.1071/FP25020","DOIUrl":"https://doi.org/10.1071/FP25020","url":null,"abstract":"<p><p>Plants have evolved complex defense mechanisms against biotic stressors. Many plant defense-related genes that play crucial roles in regulating defense responses have been identified in common bean (Phaseolus vulgaris L.). However, the functional roles of phenylalanine ammonia-lyase (PvPAL ), lipoxygenase (PvLOX ), glutathione S-transferase (PvGST ) and peroxidase (PvPOD ) in response to herbivory and wounding remain unclear in common bean. In this study, we investigated the expression patterns of PvPAL, PvLOX, PvGST and PvPOD genes in common bean under wounding and infestation by a major pest, Helicoverpa armigera , using quantitative real-time PCR (qRT-PCR) for the first time. The expression patterns of these genes in response to insect attack and wounding were compared. Moreover, the effects of wounding and H. armigera on the chlorophyll fluorescence parameters (F v /F m , PI ABS , ABS/RC, TRo/RC, ETo/RC and DIo/RC ) were also determined in common bean. Our results revealed that all genes were significantly upregulated in response to H. armigera , whereas PvPAL and PvPOD were downregulated in wounding. Notably, PvLOX and PvGST genes may play significant roles in the defense system of common bean against both wounding and H. armigera infestation. Furthermore, significant reductions in F v /F m , PI ABS and ETo/RC were determined under both wounding and H. armigera infestation. These findings suggest that H. armigera is more severe than wounding, leading to distinct gene expression profiles and photosynthetic responses in common bean. The study provides valuable insights for both researchers and breeders in future studies associated with insect stress and resilience breeding efforts.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144505420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}