Trichome mediated external water transport may compensate for reduced vascular efficiency in atmospheric epiphytic Bromeliaceae.

IF 2.7 4区 生物学 Q2 PLANT SCIENCES
Narcy Anai Pereira-Zaldívar, Luis David Patiño-López, Raúl Rodríguez-García, José Luis Andrade, Manuel Jesús Cach-Pérez, Celene Espadas-Manrique, Felipe Barredo-Pool, Casandra Reyes-García
{"title":"Trichome mediated external water transport may compensate for reduced vascular efficiency in atmospheric epiphytic Bromeliaceae.","authors":"Narcy Anai Pereira-Zaldívar, Luis David Patiño-López, Raúl Rodríguez-García, José Luis Andrade, Manuel Jesús Cach-Pérez, Celene Espadas-Manrique, Felipe Barredo-Pool, Casandra Reyes-García","doi":"10.1071/FP25140","DOIUrl":null,"url":null,"abstract":"<p><p>Complex trichomes in the leaves of epiphytic Bromeliaceae absorb water and nutrients, while also facilitating long distance water transport along the leaf surface, a phenomenon previously characterized for two Tillandsia species. This study aimed to determine trichome traits that govern external water transport speed, and its relation to life form, xylem transport capacity and environmental conditions. Using near-infrared optical techniques, we characterized trichome-mediated transport in 19 species and analyzed its association with trichome and vascular traits, functional group, and habitat parameters. External leaf water transport was observed in 10 species, all of which were atmospheric life forms (nebulophytes and pseudobulbs). Transport speed positively correlated with trichome area, wing length, and degree of overlap. Species with higher trichome overlap had lower xylem capacity (Kx ) and tracheid diameter and numbers, suggesting that the atmospheric life form is related to secure, inefficient vascular systems, which may be partly compensated with external transport. External transport was more common in species from habitats with high maximum vapor pressure deficits and low aridity indices, suggesting it enhances water uptake by rapidly redistributing water across available trichomes before evaporation can occur.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP25140","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Complex trichomes in the leaves of epiphytic Bromeliaceae absorb water and nutrients, while also facilitating long distance water transport along the leaf surface, a phenomenon previously characterized for two Tillandsia species. This study aimed to determine trichome traits that govern external water transport speed, and its relation to life form, xylem transport capacity and environmental conditions. Using near-infrared optical techniques, we characterized trichome-mediated transport in 19 species and analyzed its association with trichome and vascular traits, functional group, and habitat parameters. External leaf water transport was observed in 10 species, all of which were atmospheric life forms (nebulophytes and pseudobulbs). Transport speed positively correlated with trichome area, wing length, and degree of overlap. Species with higher trichome overlap had lower xylem capacity (Kx ) and tracheid diameter and numbers, suggesting that the atmospheric life form is related to secure, inefficient vascular systems, which may be partly compensated with external transport. External transport was more common in species from habitats with high maximum vapor pressure deficits and low aridity indices, suggesting it enhances water uptake by rapidly redistributing water across available trichomes before evaporation can occur.

在大气附生凤梨科植物中,由毛状体介导的外部水分输送可能补偿了维管效率的降低。
附生凤梨科植物叶片中的复杂毛状体吸收水分和营养,同时也促进了水分沿叶片表面的长距离输送,这一现象之前在两种凤梨属植物中被发现。本研究旨在确定控制外部水分输送速度的毛状体性状及其与生命形式、木质部输送能力和环境条件的关系。利用近红外光学技术对19种植物的毛状体转运进行了研究,并分析了其与毛状体和维管性状、功能类群和生境参数的关系。10种植物均为大气生物(云雾植物和假球茎植物)。运输速度与毛状体面积、翼长、重叠度呈正相关。毛状体重叠度高的物种木质部容量(Kx)、管胞直径和数量较低,表明大气生命形式与安全、低效的维管系统有关,可能部分由外部运输来补偿。外部运输在最大蒸汽压差高、干旱指数低的栖息地物种中更为常见,这表明在蒸发发生之前,它通过在可用毛状体之间快速重新分配水分来增强水分吸收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Functional Plant Biology
Functional Plant Biology 生物-植物科学
CiteScore
5.50
自引率
3.30%
发文量
156
审稿时长
1 months
期刊介绍: Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance. Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science. Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信