Chickpea genotypes with high ascorbic acid accumulation can mitigate the impact of high temperature stress.

IF 2.7 4区 生物学 Q2 PLANT SCIENCES
Amol P Solanke, S R Gadakh, Kruthika S, V R Awari, Apoorva Ashu, Navodhaya J V, Harimadhav C, C Laxuman, Gurumurthy S
{"title":"Chickpea genotypes with high ascorbic acid accumulation can mitigate the impact of high temperature stress.","authors":"Amol P Solanke, S R Gadakh, Kruthika S, V R Awari, Apoorva Ashu, Navodhaya J V, Harimadhav C, C Laxuman, Gurumurthy S","doi":"10.1071/FP24311","DOIUrl":null,"url":null,"abstract":"<p><p>Chickpea is widely grown during the cooler season to avoid the adverse effects of high-temperature stress (HTS). Endogenous ascorbic acid (AsA), a prominent antioxidant, plays a crucial role in mitigating abiotic stresses in various crops. This study aimed to assess genotypic variation in AsA and to investigate the mechanisms associated with higher AsA content. The evaluation was conducted under three HTS levels (NS: >28°C, HTS-1: >33°C, HTS-2: >37°C) in field conditions during the flowering stage. AsA accumulation increased progressively with increased stress levels, showing a 27.8% increase under HTS-1 and a 61.9% increase under HTS-2 compared to NS. Notably, genotypes JG-14, IPC-06-11, ICE-15654-A, and ICCV 92944-6 exhibited significantly higher AsA content under HTS conditions. These genotypes maintained cooler canopy temperatures, higher relative water content, and increased total chlorophyll content under HTS. Additionally, these genotypes exhibited lower lipid peroxidation rates, higher proline content, and higher ascorbate peroxidase activity. Furthermore, genotypes with higher AsA levels exhibited higher seed yield and seeds per plant. Overall, the findings indicate that genotypes with higher AsA accumulation, along with the heat-tolerant check JG-14, showed superior performance in physio-biochemical processes, suggesting that AsA plays a significant role in enhancing tolerance to HTS in chickpea.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP24311","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Chickpea is widely grown during the cooler season to avoid the adverse effects of high-temperature stress (HTS). Endogenous ascorbic acid (AsA), a prominent antioxidant, plays a crucial role in mitigating abiotic stresses in various crops. This study aimed to assess genotypic variation in AsA and to investigate the mechanisms associated with higher AsA content. The evaluation was conducted under three HTS levels (NS: >28°C, HTS-1: >33°C, HTS-2: >37°C) in field conditions during the flowering stage. AsA accumulation increased progressively with increased stress levels, showing a 27.8% increase under HTS-1 and a 61.9% increase under HTS-2 compared to NS. Notably, genotypes JG-14, IPC-06-11, ICE-15654-A, and ICCV 92944-6 exhibited significantly higher AsA content under HTS conditions. These genotypes maintained cooler canopy temperatures, higher relative water content, and increased total chlorophyll content under HTS. Additionally, these genotypes exhibited lower lipid peroxidation rates, higher proline content, and higher ascorbate peroxidase activity. Furthermore, genotypes with higher AsA levels exhibited higher seed yield and seeds per plant. Overall, the findings indicate that genotypes with higher AsA accumulation, along with the heat-tolerant check JG-14, showed superior performance in physio-biochemical processes, suggesting that AsA plays a significant role in enhancing tolerance to HTS in chickpea.

抗坏血酸积累量高的鹰嘴豆基因型可以减轻高温胁迫的影响。
鹰嘴豆广泛种植在较凉爽的季节,以避免高温胁迫(HTS)的不利影响。内源抗坏血酸(AsA)是一种重要的抗氧化剂,在缓解多种作物的非生物胁迫中起着重要作用。本研究旨在评估AsA的基因型变异,并探讨AsA含量升高的相关机制。在花期的田间条件下,在3个高温温度等级(NS: >28°C, hs -1: >33°C, hs -2: >37°C)下进行评价。随着胁迫水平的增加,AsA积累逐渐增加,与NS相比,HTS-1胁迫下AsA积累增加27.8%,HTS-2胁迫下AsA积累增加61.9%。值得注意的是,基因型JG-14、IPC-06-11、ICE-15654-A和ICCV 92944-6在高温胁迫下的AsA含量显著高于其他基因型。这些基因型在高温胁迫下保持较低的冠层温度、较高的相对含水量和较高的总叶绿素含量。此外,这些基因型表现出较低的脂质过氧化率,较高的脯氨酸含量和较高的抗坏血酸过氧化物酶活性。此外,AsA水平较高的基因型具有较高的种子产量和单株种子数。综上所述,AsA积累较高的基因型和耐热性检测JG-14在生理生化过程中表现优异,表明AsA在提高鹰嘴豆对高温胁迫的耐受性中发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Functional Plant Biology
Functional Plant Biology 生物-植物科学
CiteScore
5.50
自引率
3.30%
发文量
156
审稿时长
1 months
期刊介绍: Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance. Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science. Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信