HuGAI1: a key transcription factor upregulated by trypsin, regulating phenylpropanoid biosynthesis, and enhancing fruit shelf life in Hylocereus undatus.
{"title":"HuGAI1: a key transcription factor upregulated by trypsin, regulating phenylpropanoid biosynthesis, and enhancing fruit shelf life in <i>Hylocereus undatus</i>.","authors":"Xinyue Pang, Xinxin Chen, Hemin Wang, Jiaju Sun, Enyan Chen, Fuxin Li, Jingyu Jia, Bairu Li, Xin Li","doi":"10.1071/FP23242","DOIUrl":null,"url":null,"abstract":"<p><p>DELLA proteins can participate in the biosynthesis pathway of flavonoids. It has been shown that trypsin can induce flavonoid synthesis, thereby enhancing the storage quality of Hylocereus undatus (H. undatus ) fruit. However, whether trypsin induces flavonoid biosynthesis and improves fruit quality during storage by regulating the phenylpropanoid synthesis pathway through DELLA remains to be further elucidated. To investigate the molecular mechanism of trypsin-induced flavonoid synthesis in H. undatus , we conducted transcriptomic analysis and verified it through virus-induced gene silencing (VIGS). Analysis of transcription factors showed that the top five genes with the largest expression differences regulated by trypsin all belonged to the GRAS family. Further protein network interaction analysis identified HuGAI1 as a hub protein in the GRAS family. Trypsin treatment was able to extend the shelf life of fruit. However, after the expression of HuGAI1 was silenced, the storage quality of the fruit declined. GO and KEGG analysis after HuGAI1 silencing revealed that differentially expressed genes (DEGs) were mainly concentrated in metabolic pathways such as phenylpropanoid, flavonoid, and flavonol biosynthesis. Trypsin can upregulate the expression of HuGAI1 . And HuGAI1 , by participating in the phenylpropanoid biosynthesis pathway, regulates the biosynthesis of flavonoids and flavonols, leading to an increase in antioxidant flavonoid content and, consequently, enhancing fruit storage.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP23242","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
DELLA proteins can participate in the biosynthesis pathway of flavonoids. It has been shown that trypsin can induce flavonoid synthesis, thereby enhancing the storage quality of Hylocereus undatus (H. undatus ) fruit. However, whether trypsin induces flavonoid biosynthesis and improves fruit quality during storage by regulating the phenylpropanoid synthesis pathway through DELLA remains to be further elucidated. To investigate the molecular mechanism of trypsin-induced flavonoid synthesis in H. undatus , we conducted transcriptomic analysis and verified it through virus-induced gene silencing (VIGS). Analysis of transcription factors showed that the top five genes with the largest expression differences regulated by trypsin all belonged to the GRAS family. Further protein network interaction analysis identified HuGAI1 as a hub protein in the GRAS family. Trypsin treatment was able to extend the shelf life of fruit. However, after the expression of HuGAI1 was silenced, the storage quality of the fruit declined. GO and KEGG analysis after HuGAI1 silencing revealed that differentially expressed genes (DEGs) were mainly concentrated in metabolic pathways such as phenylpropanoid, flavonoid, and flavonol biosynthesis. Trypsin can upregulate the expression of HuGAI1 . And HuGAI1 , by participating in the phenylpropanoid biosynthesis pathway, regulates the biosynthesis of flavonoids and flavonols, leading to an increase in antioxidant flavonoid content and, consequently, enhancing fruit storage.
期刊介绍:
Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance.
Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.