Yuwei Yi, Hualin Zou, Nuo Wang, Yansheng Xue, Weiwei Zhang, Feng Xu, Jiabao Ye, Yongling Liao
{"title":"花椒bHLH基因家族的全基因组鉴定及刺发育相关基因的筛选。","authors":"Yuwei Yi, Hualin Zou, Nuo Wang, Yansheng Xue, Weiwei Zhang, Feng Xu, Jiabao Ye, Yongling Liao","doi":"10.1071/FP24345","DOIUrl":null,"url":null,"abstract":"<p><p>Zanthoxylum armatum has edible and medicinal value but its prickles make harvesting difficult. The bHLH gene family is vital in regulating physiological and developmental processes. One hundred and ninety-five ZabHLH genes from its genome were grouped into 11 subgroups and 23 subfamilies. Members of the bHLH IIIf subfamily play an important role in trichome development, and ZabHLH22 , ZabHLH110 , ZabHLH161 , and ZabHLH194 , which belong to this subfamily, were selected as candidate genes. Chromosomal localization analysis showed that 165 of 195 ZabHLHs were unevenly distributed on 31 chromosomes, and 30 ZabHLHs were localized to unanchored scaffolds. The expansion of ZabHLHs mainly includes dispersed replication and whole-genome duplication or segmental replication. Fourty-seven cis -acting elements were predicted in the promoters of ZabHLHs , with hormone-responsive elements being the most abundant. Expression profiles of four candidate genes were analyzed in two Z. armatum cultivars. Trichome development is regulated by hormones such as methyl jasmonate, salicylic acid, and auxin. The qRT-PCR results indicate that four candidate genes respond to the stress induced by these three hormones. We predict that ZabHLH110 , ZabHLH161 , and ZabHLH194 are most likely involved in prickle development. The results are helpful to further explore the potential roles and mechanisms of ZabHLHs in the development of Z. armatum prickles.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-wide identification of <i>bHLH</i> gene family and screening of genes related to prickle development in <i>Zanthoxylum armatum</i>.\",\"authors\":\"Yuwei Yi, Hualin Zou, Nuo Wang, Yansheng Xue, Weiwei Zhang, Feng Xu, Jiabao Ye, Yongling Liao\",\"doi\":\"10.1071/FP24345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zanthoxylum armatum has edible and medicinal value but its prickles make harvesting difficult. The bHLH gene family is vital in regulating physiological and developmental processes. One hundred and ninety-five ZabHLH genes from its genome were grouped into 11 subgroups and 23 subfamilies. Members of the bHLH IIIf subfamily play an important role in trichome development, and ZabHLH22 , ZabHLH110 , ZabHLH161 , and ZabHLH194 , which belong to this subfamily, were selected as candidate genes. Chromosomal localization analysis showed that 165 of 195 ZabHLHs were unevenly distributed on 31 chromosomes, and 30 ZabHLHs were localized to unanchored scaffolds. The expansion of ZabHLHs mainly includes dispersed replication and whole-genome duplication or segmental replication. Fourty-seven cis -acting elements were predicted in the promoters of ZabHLHs , with hormone-responsive elements being the most abundant. Expression profiles of four candidate genes were analyzed in two Z. armatum cultivars. Trichome development is regulated by hormones such as methyl jasmonate, salicylic acid, and auxin. The qRT-PCR results indicate that four candidate genes respond to the stress induced by these three hormones. We predict that ZabHLH110 , ZabHLH161 , and ZabHLH194 are most likely involved in prickle development. The results are helpful to further explore the potential roles and mechanisms of ZabHLHs in the development of Z. armatum prickles.</p>\",\"PeriodicalId\":12483,\"journal\":{\"name\":\"Functional Plant Biology\",\"volume\":\"52 \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/FP24345\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP24345","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Genome-wide identification of bHLH gene family and screening of genes related to prickle development in Zanthoxylum armatum.
Zanthoxylum armatum has edible and medicinal value but its prickles make harvesting difficult. The bHLH gene family is vital in regulating physiological and developmental processes. One hundred and ninety-five ZabHLH genes from its genome were grouped into 11 subgroups and 23 subfamilies. Members of the bHLH IIIf subfamily play an important role in trichome development, and ZabHLH22 , ZabHLH110 , ZabHLH161 , and ZabHLH194 , which belong to this subfamily, were selected as candidate genes. Chromosomal localization analysis showed that 165 of 195 ZabHLHs were unevenly distributed on 31 chromosomes, and 30 ZabHLHs were localized to unanchored scaffolds. The expansion of ZabHLHs mainly includes dispersed replication and whole-genome duplication or segmental replication. Fourty-seven cis -acting elements were predicted in the promoters of ZabHLHs , with hormone-responsive elements being the most abundant. Expression profiles of four candidate genes were analyzed in two Z. armatum cultivars. Trichome development is regulated by hormones such as methyl jasmonate, salicylic acid, and auxin. The qRT-PCR results indicate that four candidate genes respond to the stress induced by these three hormones. We predict that ZabHLH110 , ZabHLH161 , and ZabHLH194 are most likely involved in prickle development. The results are helpful to further explore the potential roles and mechanisms of ZabHLHs in the development of Z. armatum prickles.
期刊介绍:
Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance.
Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.