Aqsa Parvaiz, Muhammad Mubashar Zafar, Faiz Ahmad Joyia, Sultana Anwar, Andrei Smertenko, Hira Kamal, Saba Zafar, Mishal Subhan, Muhammad Sarwar Khan, Mahmoud F Seleiman, Majed A Alotaibi, Sezai Ercisli, Ghulam Mustafa, Xuefei Jiang
{"title":"Discovery of protein interactors of SUGARWINs in <i>Saccharum officinarum</i> using cDNA library screening.","authors":"Aqsa Parvaiz, Muhammad Mubashar Zafar, Faiz Ahmad Joyia, Sultana Anwar, Andrei Smertenko, Hira Kamal, Saba Zafar, Mishal Subhan, Muhammad Sarwar Khan, Mahmoud F Seleiman, Majed A Alotaibi, Sezai Ercisli, Ghulam Mustafa, Xuefei Jiang","doi":"10.1071/FP25049","DOIUrl":null,"url":null,"abstract":"<p><p>Sugarcane holds considerable commercial significance due to its role as the primary source of sugar and its potential as a global biofuel resource. Fungal pathogens and insect pests present significant challenges to the cultivation of this crop, leading to substantial reductions in crop yield and sugar recovery. In response to pathogen infection, plants initiate their defense mechanisms, which involve the upregulation of pathogenesis-related proteins such as chitinase, glucanase, and chitosanase. SUGARWINs refer to a group of PR-4 proteins that are associated with the defense mechanisms of sugarcane against phytopathogens. Their gene expression is induced in response to wounds caused by Diatraea saccharalis larvae and diseases caused by fungal pathogens such Colletothricum falcatum and Fusarium verticillioides . We report the finding of some other proteins that interact with SUGARWINs and may also have a role in the defense against fungal diseases. The sugarcane cDNA library was screened against SUGARWIN1 and SUGARWIN2 proteins to find possible interactors. A strong interaction of both SUGARWIN1 and SUGARWIN2 was observed with oxygen evolving enhancer protein 1 and synaptotagmin 1. These interactions were further validated by BiFC (biomolecular fluorescence complementation) assay. For further molecular characterization, subcellular localization studies of SUGARWINs and interactor proteins were conducted by translational fusion with green fluorescent protein.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP25049","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sugarcane holds considerable commercial significance due to its role as the primary source of sugar and its potential as a global biofuel resource. Fungal pathogens and insect pests present significant challenges to the cultivation of this crop, leading to substantial reductions in crop yield and sugar recovery. In response to pathogen infection, plants initiate their defense mechanisms, which involve the upregulation of pathogenesis-related proteins such as chitinase, glucanase, and chitosanase. SUGARWINs refer to a group of PR-4 proteins that are associated with the defense mechanisms of sugarcane against phytopathogens. Their gene expression is induced in response to wounds caused by Diatraea saccharalis larvae and diseases caused by fungal pathogens such Colletothricum falcatum and Fusarium verticillioides . We report the finding of some other proteins that interact with SUGARWINs and may also have a role in the defense against fungal diseases. The sugarcane cDNA library was screened against SUGARWIN1 and SUGARWIN2 proteins to find possible interactors. A strong interaction of both SUGARWIN1 and SUGARWIN2 was observed with oxygen evolving enhancer protein 1 and synaptotagmin 1. These interactions were further validated by BiFC (biomolecular fluorescence complementation) assay. For further molecular characterization, subcellular localization studies of SUGARWINs and interactor proteins were conducted by translational fusion with green fluorescent protein.
期刊介绍:
Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance.
Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.