Fungal DiversityPub Date : 2024-02-26DOI: 10.1007/s13225-024-00533-y
Claudia Coleine, Tania Kurbessoian, Giulia Calia, Manuel Delgado-Baquerizo, Alessandro Cestaro, Massimo Pindo, Federica Armanini, Francesco Asnicar, Daniela Isola, Nicola Segata, Claudio Donati, Jason E. Stajich, Sybren de Hoog, Laura Selbmann
{"title":"Class-wide genomic tendency throughout specific extremes in black fungi","authors":"Claudia Coleine, Tania Kurbessoian, Giulia Calia, Manuel Delgado-Baquerizo, Alessandro Cestaro, Massimo Pindo, Federica Armanini, Francesco Asnicar, Daniela Isola, Nicola Segata, Claudio Donati, Jason E. Stajich, Sybren de Hoog, Laura Selbmann","doi":"10.1007/s13225-024-00533-y","DOIUrl":"https://doi.org/10.1007/s13225-024-00533-y","url":null,"abstract":"<p>The classes <i>Dothideomycetes</i> and <i>Eurotiomycetes</i> include constitutively melanized fungi adapted to extreme conditions and they are widely distributed in diverse hostile habitats worldwide. Yet, despite the growing interest in these fungi, there is a considerable gap of knowledge on their functionality. Their genomic analysis is still in its infancy and the possibility to understand their adaptive strategies and exploit their potentialities in bioremediation is very limited. Here, we supply a genome catalog of 118 black fungi, encompassing different ecologies, phylogenies and lifestyles, as a first example of a comparative genomic study at high level of diversity. Results indicate that, as a rule, <i>Dothideomycetes</i> show more variable genome size and that larger genomes are associated with harshest conditions; low temperature tolerance and DNA repair capacity are overrepresented in their genomes. In <i>Eurotiomycetes</i> high temperature tolerance and capacity to metabolize hydrocarbons are more frequently present and these abilities are positively correlated with the human presence. The genomic features are consistent with the prevalent ecologies in the two classes. Indeed, <i>Dothideomycetes</i> are more common in cold and dry environments with high capacity for DNA repair being consistent with the normally highly UV-impacted conditions in their habitats; in contrast, <i>Eurotiomycetes</i> spread mainly in hot human-impacted sites with industrial pollution. Mean annual temperature and isothermality are positively correlated with tolerance to high temperatures in <i>Dothideomycetes</i>, suggesting that, despite their preference for the cold, they are potentially equipped to survive even when temperatures rise due to the global warming.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":null,"pages":null},"PeriodicalIF":20.3,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139967382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fungal DiversityPub Date : 2024-02-15DOI: 10.1007/s13225-023-00529-0
Shi-Liang Liu, Xue-Wei Wang, Guo-Jie Li, Chun-Ying Deng, Walter Rossi, Marco Leonardi, Kare Liimatainen, Tapio Kekki, Tuula Niskanen, Matthew E. Smith, Joe Ammirati, Dimitar Bojantchev, Mohamed A. Abdel-Wahab, Ming Zhang, Enjing Tian, Yong-Zhong Lu, Jing-Yi Zhang, Jian Ma, Arun Kumar Dutta, Krishnendu Acharya, Tian-Ye Du, Jize Xu, Ji Seon Kim, Young Woon Lim, Alice Gerlach, Nian-Kai Zeng, Yun-Xiao Han, Parisa Razaghi, Mubashar Raza, Lei Cai, Mark S. Calabon, E. B. Gareth Jones, Rituparna Saha, T. K. Arun Kumar, K. Krishnapriya, Anjitha Thomas, Malarvizhi Kaliyaperumal, Kezhocuyi Kezo, Sugantha Gunaseelan, Sanjay Kumar Singh, Paras Nath Singh, Ajay Chandrakant Lagashetti, Kadambari Subhash Pawar, Shuhua Jiang, Chao Zhang, Huang Zhang, Yun Qing, Tolgor Bau, Xing-Can Peng, Ting-Chi Wen, Natalia A. Ramirez, Nicolás Niveiro, Mei-Xiang Li, Zhu L. Yang, Gang Wu, Entaj Tarafder, Danushka S. Tennakoon, Chang-Hsin Kuo, Tatiane M. da Silva, Cristina M. Souza-Motta, Jadson D. P. Bezerra,..
{"title":"Fungal diversity notes 1717–1817: taxonomic and phylogenetic contributions on genera and species of fungal taxa","authors":"Shi-Liang Liu, Xue-Wei Wang, Guo-Jie Li, Chun-Ying Deng, Walter Rossi, Marco Leonardi, Kare Liimatainen, Tapio Kekki, Tuula Niskanen, Matthew E. Smith, Joe Ammirati, Dimitar Bojantchev, Mohamed A. Abdel-Wahab, Ming Zhang, Enjing Tian, Yong-Zhong Lu, Jing-Yi Zhang, Jian Ma, Arun Kumar Dutta, Krishnendu Acharya, Tian-Ye Du, Jize Xu, Ji Seon Kim, Young Woon Lim, Alice Gerlach, Nian-Kai Zeng, Yun-Xiao Han, Parisa Razaghi, Mubashar Raza, Lei Cai, Mark S. Calabon, E. B. Gareth Jones, Rituparna Saha, T. K. Arun Kumar, K. Krishnapriya, Anjitha Thomas, Malarvizhi Kaliyaperumal, Kezhocuyi Kezo, Sugantha Gunaseelan, Sanjay Kumar Singh, Paras Nath Singh, Ajay Chandrakant Lagashetti, Kadambari Subhash Pawar, Shuhua Jiang, Chao Zhang, Huang Zhang, Yun Qing, Tolgor Bau, Xing-Can Peng, Ting-Chi Wen, Natalia A. Ramirez, Nicolás Niveiro, Mei-Xiang Li, Zhu L. Yang, Gang Wu, Entaj Tarafder, Danushka S. Tennakoon, Chang-Hsin Kuo, Tatiane M. da Silva, Cristina M. Souza-Motta, Jadson D. P. Bezerra,..","doi":"10.1007/s13225-023-00529-0","DOIUrl":"https://doi.org/10.1007/s13225-023-00529-0","url":null,"abstract":"<p>As the continuation of Fungal Diversity Notes series, the current paper is the 16th contribution to this series. A total of 103 taxa from seven classes in <i>Ascomycota</i> and <i>Basidiomycota</i> are included here. Of these 101 taxa, four new genera, 89 new species, one new combination, one new name and six new records are described in detail along with information of hosts and geographic distributions. The four genera newly introduced are <i>Ascoglobospora</i>, <i>Atheliella</i>, <i>Rufoboletus</i> and <i>Tenuimyces</i>. Newly described species are <i>Akanthomyces xixiuensis</i>, <i>Agaricus agharkarii</i>, <i>A. albostipitatus</i>, <i>Amphisphaeria guttulata</i>, <i>Ascoglobospora marina</i>, <i>Astrothelium peudostraminicolor</i>, <i>Athelia naviculispora</i>, <i>Atheliella conifericola</i>, <i>Athelopsis </i><i>subglaucina</i>, <i>Aureoboletus minimus</i>, <i>A. nanlingensis</i>, <i>Autophagomyces incertus</i>, <i>Beltrania liliiferae</i>, <i>Beltraniella jiangxiensis</i>, <i>Botryobasidium coniferarum</i>, <i>Calocybella sribuabanensis</i>, <i>Calonarius caesiofulvus</i>, <i>C. nobilis</i>, <i>C. pacificus</i>, <i>C. pulcher</i>, <i>C. subcorrosus</i>, <i>Cortinarius flaureifolius</i>, <i>C. floridaensis</i>, <i>C. subiodes</i>, <i>Crustomyces juniperi</i>, <i>C. scytinostromoides</i>, <i>Cystostereum subsirmaurense</i>, <i>Dimorphomyces seemanii</i>, <i>Fulvoderma microporum</i>, <i>Ginnsia laricicola</i>, <i>Gomphus zamorinorum</i>, <i>Halobyssothecium sichuanense</i>, <i>Hemileccinum duriusculum</i>, <i>Henningsomyces hengduanensis</i>, <i>Hygronarius californicus</i>, <i>Kneiffiella pseudoabdita</i>, <i>K. pseudoalutacea</i>, <i>Laboulbenia bifida</i>, <i>L. tschirnhausii</i>, <i>L. tuberculata</i>, <i>Lambertella dipterocarpacearum</i>, <i>Laxitextum subrubrum</i>, <i>Lyomyces austro-occidentalis</i>, <i>L. crystallina</i>, <i>L. guttulatus</i>, <i>L. niveus</i>, <i>L. tasmanicus</i>, <i>Marasmius centrocinnamomeus</i>, <i>M. ferrugineodiscus</i>, <i>Megasporoporia tamilnaduensis</i>, <i>Meruliopsis crystallina</i>, <i>Metuloidea imbricata</i>, <i>Moniliophthora atlantica</i>, <i>Mystinarius ochrobrunneus</i>, <i>Neomycoleptodiscus alishanense</i>, <i>Nigrograna kunmingensis</i>, <i>Paracremonium aquaticum</i>, <i>Parahelicomyces dictyosporus</i>, <i>Peniophorella sidera</i>, <i>P. subreticulata</i>, <i>Phlegmacium fennicum</i>, <i>P. pallidocaeruleum</i>, <i>Pholiota betulicola</i>, <i>P. subcaespitosa</i>, <i>Pleurotheciella hyalospora</i>, <i>Pleurothecium aseptatum</i>, <i>Resupinatus porrigens</i>, <i>Russula chlorina</i>, <i>R. chrysea</i>, <i>R. cruenta</i>, <i>R. haematina</i>, <i>R. luteocarpa</i>, <i>R. sanguinolenta</i>, <i>Synnemellisia punensis</i>, <i>Tenuimyces bambusicola</i>, <i>Thaxterogaster americanoporphyropus</i>, <i>T. obscurovibratilis</i>, <i>Thermoascus endophyticus</i>, <i>Trechispora alba</i>, <i>T. perminispora</i>, <i>T. subfarinacea</i>, <i>T. tuberculata</i>, <i>Tremella sairandhriana</i>, <i>Tropico","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":null,"pages":null},"PeriodicalIF":20.3,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139739323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fungal DiversityPub Date : 2023-12-11DOI: 10.1007/s13225-023-00530-7
Xuncheng Wang, Wei Zhang, Junbo Peng, Ishara S. Manawasinghe, Linna Wu, Yonghua Li, Qikai Xing, Xinghong Li, Jiye Yan
{"title":"Lifestyle changes in Botryosphaeriaceae as evidenced by ancestral genome expansion and horizontal gene transfer","authors":"Xuncheng Wang, Wei Zhang, Junbo Peng, Ishara S. Manawasinghe, Linna Wu, Yonghua Li, Qikai Xing, Xinghong Li, Jiye Yan","doi":"10.1007/s13225-023-00530-7","DOIUrl":"https://doi.org/10.1007/s13225-023-00530-7","url":null,"abstract":"<p><i>Botryosphaeriaceae</i> (Botryosphaeriales, Dothideomycetes, Ascomycota) encompasses commonly encountered opportunistic pathogens that cause stem cankers on woody plants. Lifestyles of <i>Botryosphaeriaceae</i> species could vary as endophytes, pathogens and saprobes and one species can have one or more lifestyles. Therefore, this family is an excellent candidate to study the relationships among lifestyles and lifestyle changes. It is postulated that this family has saprobic ancestors, and the mechanisms by which they evolved from nonpathogenic ancestors to woody pathogens remain unclear. Here, we present an analysis of 18 <i>Botryosphaeriaceae</i> genomes, including four newly generated high-quality genomes of <i>Botryosphaeriaceae</i> strains. We compared <i>Botryosphaeriaceae</i> genomes with phylogenetically closely related Dothideomycetes taxa including plant pathogens and saprobes which revealed significant net gene family expansion in <i>Botryosphaeriaceae</i>. This gene expansion is prominent in the early ancestors before the divergence of genera of <i>Botryosphaeriaceae</i>. This expansion affected the pathogenicity-related genes and detoxification genes. Furthermore, we analysed horizontal gene transfer, which is a mechanism of transfer to genetic material between organisms that are not in a parent–offspring relationship and identified widespread putative intra-kingdom horizontal gene transfer events in this family. Most were transferred during the evolution of ancient ancestors of <i>Botryosphaeriaceae</i>, before the divergence of the modern genera and were enriched in pathogenicity-related genes and detoxification genes. Furthermore, The RNA sequencing analysis of the <i>Botryosphaeriaceae</i> species <i>Lasiodiplodia theobromae</i> revealed that pathogenicity-related genes and detoxification genes, including those obtained through gene family expansion and horizontal gene transfers, were significantly induced after the infection of plant hosts rather than before infection. These insights reveal critical roles for gene family expansion and horizontal gene transfers in the evolutionary adaptation of <i>Botryosphaeriaceae</i> in the infection of woody plants. We postulate that the pathogenic lifestyle of <i>Botryosphaeriaceae</i> species evolved from saprobic or endophytic lifestyles in the early divergence of this family. However, there are few endophytic genomes available for closely related species of <i>Botryosphaeriaceae</i>, thus further studies are necessary to clarify the evolutionary relationships of the endophytes.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":null,"pages":null},"PeriodicalIF":20.3,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138571359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ASF1 regulates asexual and sexual reproduction in Stemphylium eturmiunum by DJ-1 stimulation of the PI3K/AKT signaling pathway","authors":"Shi Wang, Xiaoman Liu, Chenlin Xiong, Susu Gao, Wenmeng Xu, Lili Zhao, Chunyan Song, Xiaoyong Liu, Timothy Y. James, Zhuang Li, Xiuguo Zhang","doi":"10.1007/s13225-023-00528-1","DOIUrl":"https://doi.org/10.1007/s13225-023-00528-1","url":null,"abstract":"<p>Most fungi display a mixed mating system with both asexual and sexual reproduction. The timing of the two modes of reproduction must be carefully coordinated through signal perception and coordination in the cell along with chromatin modification. Here, we investigated coordination of reproductive output by investigating the function of the histone chaperone anti-silencing factor 1 (ASF1) in a fungal species amenable to characterization of both asexual and sexual reproduction. We used knockout approach to show that SeASF1 influenced asexual and sexual reproduction in <i>Stemphylium eturmiunum</i>. SeASF1-deleted strains failed to produce pseudothecia, but produce abnormal conidia and showed an irregular distribution of nuclei in mycelium. Transcriptome sequencing was then used to identify genes with altered expression in the SeASF1-deleted strains. The transcriptional expression of the identified SeDJ-1 was strongly regulated by SeASF1. The interaction of SeDJ-1 and SeASF1 was confirmed using Y2H, Co-IP, and pull-down. Due to some components of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway were known to interact with DJ-1 in mammals, we verified SePI3K, an element of PI3K/AKT signaling pathway in <i>S. eturmiunum</i>, was directly linked to SeDJ-1 and then these two proteins were defined as a coordinator of reproduction. However, knockout of SeDJ-1 or SePI3K altered the asexual and sexual reproduction, but SePI3K recovered the asexual and sexual development of ∆<i>Sedj-1</i>. The SeDJ-1-M6 segment of SeDJ-1 was essential for its interaction with SePI3K and played a critical role in restoring sexual reproduction in the ∆<i>Sepi3k</i>, providing a deep understanding of the regulatory mechanism of SeDJ-1 in <i>S. eturmiunum</i> development. Summarily, SeASF1 is able to trigger SeDJ-1 and SeDJ-1can also activate SePI3K, which is orchestrally involved in asexual and sexual reproduction in <i>S. eturmiunum</i>. All these results reveal that SeASF1 manipulates asexual and sexual reproduction in <i>S. eturmiunum</i> by SeDJ-1 perception of PI3K/AKT signaling pathway. These data highlight the deep similarities in coordinating asexual and sexual processes in both fungi and eukaryotes in general.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":null,"pages":null},"PeriodicalIF":20.3,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138481014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fungal DiversityPub Date : 2023-11-27DOI: 10.1007/s13225-023-00527-2
Zheng-Mi He, Zuo-Hong Chen, Tolgor Bau, Geng-Shen Wang, Zhu L. Yang
{"title":"Systematic arrangement within the family Clitocybaceae (Tricholomatineae, Agaricales): phylogenetic and phylogenomic evidence, morphological data and muscarine-producing innovation","authors":"Zheng-Mi He, Zuo-Hong Chen, Tolgor Bau, Geng-Shen Wang, Zhu L. Yang","doi":"10.1007/s13225-023-00527-2","DOIUrl":"https://doi.org/10.1007/s13225-023-00527-2","url":null,"abstract":"<p>The Clitocybaceae is a recently established family. Currently, the infrafamilial divisions and relationships within the family are vague due to limited sampling and genes employed for phylogenetic analysis. Some mushrooms of the family contain the neurotoxic muscarine, which has caused many severe and even deadly poisonings worldwide. However, the taxonomic distribution and evolution of the toxin within the family is largely unknown. In this study, phylogenetic analyses based on nucleotide sequences of ITS and of six molecular loci (ITS, LSU, <i>TEF1</i>, <i>RPB1</i>, <i>RPB2</i> and <i>ATP6</i>), plus a phylogenomic analysis based on 485 single-copy orthologous genes, were performed to reconstruct the framework of Clitocybaceae. BEAST analysis was used to estimate the divergence times within the family. Additionally, biochemical analysis for muscarine was conducted of 32 representative species. Based on these analyses, an updated classification of Clitocybaceae into six genera (<i>Clitocybe</i>, <i>Collybia</i>, <i>Dendrocollybia</i>, <i>Lepista</i>, <i>Pseudolyophyllum</i>, and <i>Singerocybe</i>) is proposed. The genus <i>Collybia</i> is emended to accommodate four subgenera (<i>Collybia</i>, <i>Crassicybe</i>, <i>Leucocalocybe</i>, and <i>Macrosporocybe</i>). Seventeen new Chinese species and 15 new combinations are proposed. Keys to the genera of Clitocybaceae and the subgenera of <i>Collybia</i>, as well as to the known species of <i>Clitocybe</i> and <i>Collybia</i> subgen. <i>Collybia</i> in China, are presented. In addition, muscarine was detected in 18 species, and these muscarine-containing species formed a major monophyletic clade within <i>Collybia</i> subgen. <i>Collybia</i>. Finally, our phylogenetic, phylogenomic, chemotaxonomic and molecular dating results indicate that the Clitocybaceae is a natural group estimated to have arisen some 60 million years ago, and in this family, muscarine has evolved only once circa 20 million years ago without later losses.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":null,"pages":null},"PeriodicalIF":20.3,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138449723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fungal DiversityPub Date : 2023-11-20DOI: 10.1007/s13225-023-00526-3
Chao Tang, Xin Zhou, Jacques Guillot, Gudrun Wibbelt, Shuwen Deng, Hazal Kandemir, Yvonne Gräser, Peiying Feng, Yingqian Kang, G. Sybren de Hoog
{"title":"Dermatophytes and mammalian hair: aspects of the evolution of Arthrodermataceae","authors":"Chao Tang, Xin Zhou, Jacques Guillot, Gudrun Wibbelt, Shuwen Deng, Hazal Kandemir, Yvonne Gräser, Peiying Feng, Yingqian Kang, G. Sybren de Hoog","doi":"10.1007/s13225-023-00526-3","DOIUrl":"https://doi.org/10.1007/s13225-023-00526-3","url":null,"abstract":"<p>Dermatophytes and other members of <i>Onygenales</i> are unique in their ability to degrade keratin, affecting hair and nails, and in the case of human hosts, causing skin infections. Subtillisins are essential proteases in keratin assimilation, and subtilisin-like protease 1 (SUB1) and SUB3–7 are specific for dermatophytes. <i>eIF2α</i> kinases are serine-threonine kinases that perform essential functions in response to infection, proteotoxicity, and nutrient scavenging. The relatively conserved nature of EIF2AK4 among fungi makes them potential evolutionary markers, which may contribute to a deeper understanding of dermatophyte taxonomy and evolution. This study aimed to assess the phylogeny of dermatophytes by examining the EIF2AK4 and SUB1 genes compared to the ITS gene marker. The phylogenetic trees generated from the EIF2AK4 and SUB1 genes exhibited a similar topology, which differed from that observed in the ITS tree. Our preliminary findings with a limited dataset suggest that the EIF2AK4 and SUB1 <i>g</i>enes provide a reasonably correct reflection of the evolution of <i>Arthrodermataceae</i>. In addition, the study analyzed in vitro keratinolytic responses of 19 dermatophyte species using hairs of a broad range of mammals, including ancestral as well as derived species, as substrates. <i>Trichophyton mentagrophytes</i> and <i>Nannizzia gypsea</i> were the most active in degrading hair, while <i>Trichophyton verrucosum</i>, <i>Trichophyton tonsurans</i> and <i>Epidermophyton floccosum</i> showed low response. Hairs of <i>Hyracoidea</i> and <i>Rodentia</i> were most affected of all mammal hairs, while in contrast, bat hairs were difficult to degrade by nearly all tested dermatophyte species. Zoophilic species showed more activity than anthropophilic dermatophytes, but hair degradation profiles were not diagnostic for particular dermatophyte species.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":null,"pages":null},"PeriodicalIF":20.3,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138085809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fungal DiversityPub Date : 2023-11-12DOI: 10.1007/s13225-023-00523-6
Indunil C. Senanayake, Walter Rossi, Marco Leonardi, Alex Weir, Mark McHugh, Kunhiraman C. Rajeshkumar, Rajnish K. Verma, Samantha C. Karunarathna, Saowaluck Tibpromma, Nikhil Ashtekar, Sreejith K. Ashtamoorthy, Sanjay Raveendran, Gurmeet Kour, Aishwarya Singh, Saúl De la Peña-Lastra, Antonio Mateos, Miroslav Kolařík, Vladimír Antonín, Hana Ševčíková, Fernando Esteve-Raventós, Ellen Larsson, Fermín Pancorbo, Gabriel Moreno, Alberto Altés, Yolanda Turégano, Tian-Ye Du, Li Lu, Qi-Rui Li, Ji-Chuan Kang, Sugantha Gunaseelan, Kezhocuyi Kezo, Malarvizhi Kaliyaperumal, Jizhen Fu, Milan C. Samarakoon, Yusufjon Gafforov, Shakhnoza Teshaboeva, Pradeep C. Kunjan, Arya Chamaparambath, Adam Flakus, Javier Etayo, Pamela Rodriguez-Flakus, Mikhail P. Zhurbenko, Nimali I. de Silva, Danushka S. Tennakoon, K. P. Deepna Latha, Patinjareveettil Manimohan, K. N. Anil Raj, Mark S. Calabon, Abdollah Ahmadpour, Zeinab Heidarian, Zahra Alavi, Fatemeh Alavi, Youbert Ghosta, Razmig Azizi, Mei Luo, Min-P..
{"title":"Fungal diversity notes 1611–1716: taxonomic and phylogenetic contributions on fungal genera and species emphasis in south China","authors":"Indunil C. Senanayake, Walter Rossi, Marco Leonardi, Alex Weir, Mark McHugh, Kunhiraman C. Rajeshkumar, Rajnish K. Verma, Samantha C. Karunarathna, Saowaluck Tibpromma, Nikhil Ashtekar, Sreejith K. Ashtamoorthy, Sanjay Raveendran, Gurmeet Kour, Aishwarya Singh, Saúl De la Peña-Lastra, Antonio Mateos, Miroslav Kolařík, Vladimír Antonín, Hana Ševčíková, Fernando Esteve-Raventós, Ellen Larsson, Fermín Pancorbo, Gabriel Moreno, Alberto Altés, Yolanda Turégano, Tian-Ye Du, Li Lu, Qi-Rui Li, Ji-Chuan Kang, Sugantha Gunaseelan, Kezhocuyi Kezo, Malarvizhi Kaliyaperumal, Jizhen Fu, Milan C. Samarakoon, Yusufjon Gafforov, Shakhnoza Teshaboeva, Pradeep C. Kunjan, Arya Chamaparambath, Adam Flakus, Javier Etayo, Pamela Rodriguez-Flakus, Mikhail P. Zhurbenko, Nimali I. de Silva, Danushka S. Tennakoon, K. P. Deepna Latha, Patinjareveettil Manimohan, K. N. Anil Raj, Mark S. Calabon, Abdollah Ahmadpour, Zeinab Heidarian, Zahra Alavi, Fatemeh Alavi, Youbert Ghosta, Razmig Azizi, Mei Luo, Min-P..","doi":"10.1007/s13225-023-00523-6","DOIUrl":"https://doi.org/10.1007/s13225-023-00523-6","url":null,"abstract":"<p>This article is the 15th contribution in the Fungal Diversity Notes series, wherein 115 taxa from three phyla, nine classes, 28 orders, 48 families, and 64 genera are treated. Fungal taxa described and illustrated in the present study include a new family, five new genera, 61 new species, five new combinations, one synonym, one new variety and 31 records on new hosts or new geographical distributions. Ageratinicolaceae <i>fam. nov.</i> is introduced and accommodated in Pleosporales. The new genera introduced in this study are <i>Ageratinicola</i>, <i>Kevinia</i>, <i>Pseudomultiseptospora</i> (Parabambusicolaceae), <i>Marasmiellomycena</i>, and <i>Vizzinia</i> (Porotheleaceae). Newly described species are <i>Abrothallus altoandinus</i>, <i>Ageratinicola kunmingensis</i>, <i>Allocryptovalsa aceris</i>, <i>Allophoma yuccae</i>, <i>Apiospora cannae</i>, <i>A. elliptica</i>, <i>A. pallidesporae</i>, <i>Boeremia wisteriae</i>, <i>Calycina papaeana</i>, <i>Clypeococcum lichenostigmoides</i>, <i>Coniochaeta riskali-shoyakubovii</i>, <i>Cryphonectria kunmingensis</i>, <i>Diaporthe angustiapiculata</i>, <i>D. campylandrae</i>, <i>D. longipapillata</i>, <i>Diatrypella guangdongense</i>, <i>Dothiorella franceschinii</i>, <i>Endocalyx phoenicis</i>, <i>Epicoccum terminosporum</i>, <i>Fulvifomes karaiensis</i>, <i>F. pannaensis</i>, <i>Ganoderma ghatensis</i>, <i>Hysterobrevium baoshanense</i>, <i>Inocybe avellaneorosea</i>, <i>I. lucida</i>, <i>Jahnula oblonga</i>, <i>Kevinia lignicola</i>, <i>Kirschsteiniothelia guangdongensis</i>, <i>Laboulbenia caprina</i>, <i>L. clavulata</i>, <i>L. cobiae</i>, <i>L. cosmodisci</i>, <i>L. nilotica</i>, <i>L. omalii</i>, <i>L. robusta</i>, <i>L. similis</i>, <i>L. stigmatophora</i>, <i>Laccaria rubriporus</i>, <i>Lasiodiplodia morindae</i>, <i>Lyophyllum agnijum</i>, <i>Marasmiellomycena pseudoomphaliiformis</i>, <i>Melomastia beihaiensis</i>, <i>Nemania guangdongensis</i>, <i>Nigrograna thailandica</i>, <i>Nigrospora ficuum</i>, <i>Oxydothis chinensis</i>, <i>O. yunnanensis</i>, <i>Petriella thailandica</i>, <i>Phaeoacremonium chinensis</i>, <i>Phialocephala chinensis</i>, <i>Phytophthora debattistii</i>, <i>Polyplosphaeria nigrospora</i>, <i>Pronectria loweniae</i>, <i>Seriascoma acutispora</i>, <i>Setoseptoria bambusae</i>, <i>Stictis anomianthi</i>, <i>Tarzetta tibetensis</i>, <i>Tarzetta urceolata</i>, <i>Tetraploa obpyriformis</i>, <i>Trichoglossum beninense</i>, and <i>Tricoderma pyrrosiae</i>. We provide an emendation for <i>Urnula ailaoshanensis Agaricus duplocingulatoides</i> var. <i>brevisporus</i> introduced as a new variety based on morphology and phylogeny.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":null,"pages":null},"PeriodicalIF":20.3,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91398702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fungal DiversityPub Date : 2023-08-14DOI: 10.5380/diver.v16i1.86723
Bernardo Demaria Ignácio Brum
{"title":"CRIME EM QUADRO: A ESTÉTICA TRUE CRIME E SUA CHEGADA AO BRASIL COM O CASO EVANDRO (2018)","authors":"Bernardo Demaria Ignácio Brum","doi":"10.5380/diver.v16i1.86723","DOIUrl":"https://doi.org/10.5380/diver.v16i1.86723","url":null,"abstract":"O artigo aborda a consolidação do gênero true crime no Brasil com a terceira temporada do podcast Projetos Humanos e sua adaptação na série documental O Caso Evandro, investigando o interesse crescente pelo gênero do Brasil na forma de produções investigativas. Será traçado um retrospecto desde as narrativas inspiradas por crimes reais de Edgar Allan Poe, livros de não-ficção como A Sangue Frio e os adventos do podcast e das séries de streaming. No caso brasileiro se investigará das crônicas-reportagens de João do Rio, os romances-reportagens de José Louzeiro e os podcasts de Ivan Mizanzuk. Por fim, discute-se, a partir da noção Seltzer do “true crime ser crime factual que parece crime ficcional”, o uso de estratégias narratológicas semelhantes às obras de ficção do gênero suspense e a relação do gênero com os campos do jornalismo, justiça e entretenimento.","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":null,"pages":null},"PeriodicalIF":20.3,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87168695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}