Food Hydrocolloids for Health最新文献

筛选
英文 中文
Emulsion electrospraying and spray drying of whey protein nano and microparticles with curcumin 乳清蛋白纳米颗粒和微颗粒的姜黄素乳液电喷雾和喷雾干燥
IF 1.9
Food Hydrocolloids for Health Pub Date : 2023-02-03 DOI: 10.1016/j.fhfh.2023.100122
L. Mahalakshmi, P. Choudhary, J.A. Moses, C. Anandharamakrishnan
{"title":"Emulsion electrospraying and spray drying of whey protein nano and microparticles with curcumin","authors":"L. Mahalakshmi,&nbsp;P. Choudhary,&nbsp;J.A. Moses,&nbsp;C. Anandharamakrishnan","doi":"10.1016/j.fhfh.2023.100122","DOIUrl":"10.1016/j.fhfh.2023.100122","url":null,"abstract":"<div><p>This study describes the potential of nanoencapsulation of curcumin using the oil-in-water emulsion electrospraying technique. Whey protein was used as wall material, coconut oil was substituted as carrier material for curcumin and the emulsion was prepared at 1:200 and 1:500 core-to-wall (curcumin: whey protein) ratios through high-speed homogenization. Encapsulated micro and nanoparticles were produced by spray drying and electrospraying techniques, respectively, and the influence of both encapsulation processes and core-to-wall ratios on the physicochemical and functional stability of encapsulated curcumin was studied. At the 1:500 core-to-wall ratio, the resulting electrosprayed particles showed a smooth spherical shape with size in the nanoscale range (∼371 nm). Electrosprayed particles with a 1:500 core-to-wall ratio exhibited higher encapsulation efficiency with ∼88% retention of curcumin, around 1.08-fold higher than spray dried particles. Fourier transform infrared spectroscopy study explained the interactions of whey protein with coconut oil containing curcumin through hydrogen bonding and hydrophobic interactions. Interactions had a positive impact on the stability of encapsulated curcumin during simulated gastric and intestinal conditions. Solubility of the curcumin was enhanced in all encapsulated particles as observed through dissolution studies; in particular, electrosprayed particles showed higher dissolution behavior as compared to spray dried particles. Electrosprayed curcumin nanoparticles with a 1:500 core-to-wall ratio showed significant protection against degradation of curcumin under simulated gastric and intestinal conditions and had higher bioaccessibility (∼83%) than other formulations. Thus, the proposed study explains a promising strategy for the production of nanoencapsulated particles with enhanced stability of curcumin, and the results of this work can be extended to functional food applications.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44467488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
β-lactoglobulin peptides originating during in vitro digestion improve the bioaccesibility of healthy oils emulsions by forming mixed bile salts micelles with enhanced capacity to solubilize lipolysis products 体外消化过程中产生的β-乳球蛋白肽通过形成混合胆汁盐胶束,提高了脂解产物的溶解能力,从而提高了健康油乳的生物可及性
IF 1.9
Food Hydrocolloids for Health Pub Date : 2023-02-01 DOI: 10.1016/j.fhfh.2023.100121
Julieta N. Naso , Fernando A. Bellesi , Ana M.R. Pilosof
{"title":"β-lactoglobulin peptides originating during in vitro digestion improve the bioaccesibility of healthy oils emulsions by forming mixed bile salts micelles with enhanced capacity to solubilize lipolysis products","authors":"Julieta N. Naso ,&nbsp;Fernando A. Bellesi ,&nbsp;Ana M.R. Pilosof","doi":"10.1016/j.fhfh.2023.100121","DOIUrl":"10.1016/j.fhfh.2023.100121","url":null,"abstract":"<div><p>The study of lipid digestion has increased in recent years in order to elucidate how lipolysis can be controlled as this knowledge can aid to design healthier emulsified foods. Most of the works have attributed the decrease of the extent and rate of lipolysis of protein stabilized emulsions to droplet coalescence during the gastric phase causing a decrease of the interfacial area available for the reaction. Despite the crucial role of BS in lipids digestion, only few works have attributed a decrease of lipolysis to BS-emulsifiers interactions occurring both, at the interface, or in the bulk phase. The present work focuses in understanding the way in which a model milk protein as β-lactoglobulin (βlg), used as emulsifier, interacts with BS micelles under <em>in vitro</em> gastroduodenal conditions, modifying their capacity to solubilize the products of lipolysis and verify if this phenomenon is reflected in the kinetics of lipolysis of olive or chia oil in water emulsions.</p><p>This work shows that the presence of βlg promotes the bioaccessibility of healthy oils such as olive oil or chia oil, which are sources of bioactive fatty acids. The mechanism involved is mediated by the interaction of the BS micelles with the peptides originated from the gastroduodenal proteolysis of the protein. As a result of this interaction, mixed micelles with a much higher capacity to solubilize the lipolysis products are formed. Therefore the lipolysis can proceed at the highest rate for a longer time.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47897624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Formulation of double emulsions of mango seed extract (Mangifera indica L.) 'Ataulfo' incorporated into a mango by-product flour drink: Release kinetics, antioxidant capacity, and inhibition of cyclooxygenases 芒果籽提取物(Mangifera indica L.)‘Ataulfo’双乳液在芒果副产品面粉饮料中的配方:释放动力学、抗氧化能力和对环氧合酶的抑制
IF 1.9
Food Hydrocolloids for Health Pub Date : 2023-01-22 DOI: 10.1016/j.fhfh.2023.100120
Abraham Osiris Martínez-Olivo , Víctor Manuel Zamora-Gasga , Luis Medina-Torres , Alejandro Pérez-Larios , Jorge Alberto Sánchez-Burgos
{"title":"Formulation of double emulsions of mango seed extract (Mangifera indica L.) 'Ataulfo' incorporated into a mango by-product flour drink: Release kinetics, antioxidant capacity, and inhibition of cyclooxygenases","authors":"Abraham Osiris Martínez-Olivo ,&nbsp;Víctor Manuel Zamora-Gasga ,&nbsp;Luis Medina-Torres ,&nbsp;Alejandro Pérez-Larios ,&nbsp;Jorge Alberto Sánchez-Burgos","doi":"10.1016/j.fhfh.2023.100120","DOIUrl":"10.1016/j.fhfh.2023.100120","url":null,"abstract":"<div><p>The encapsulation and release of bioactive compounds obtained from by-products are aspects of exponential boom for several decades, as it seeks to maintain or enhance their activity. A double emulsion (W<sub>1</sub>/O/W<sub>2</sub>) was developed with mango seed extract (MS) 'Ataulfo', said extract contains gallic acid and pentagalloyl glucose as major compounds (80.16%). The double emulsion was subjected to release kinetics for 3 h in phosphate buffer (pH 6.9), presenting a release constant (k) of 35,350 ± 6,031 μg/mL/min, in addition to antioxidant capacity by the DPPH and FRAP method of 168,663 ± 4,273 and 39,718 ± 1,019 mMol/g of double emulsion respectively at 120 min of kinetics, the time of 120 min was determined as the latency time (l). The release behavior corresponds to zero-order kinetics since the release of the extract remains constant until the minimum concentration is reached to exert the antioxidant capacity mentioned above. The mechanism of release of the SM extract contained in the double emulsion is governed by diffusion (Fickian behavior), this was determined thanks to the equations of the Korsmeyer-Peppas mathematical model, obtaining a regression adjustment (R<sup>2</sup>) of 0.9252 for said model and R<sup>2</sup> of 0.8126 for zero-order kinetics. The double emulsion was added to a mango peel drink formulation, to which the antitopoisomerase activity was determined in strains of S. cerevisiae (JN394 and JN362a), however, no inhibitory activity was presented towards any strain. The cyclooxygenase inhibition (COX) assay was performed on the 120-minute released fraction and the MS extract, showing that this fraction only showed 18.97% inhibition in COX-II, however, the SM extract obtained an inhibition percentage of 38.14% in COX-II.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45785803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Efficacy of alginate and chickpea protein polymeric matrices in encapsulating curcumin for improved stability, sustained release and bioaccessibility 海藻酸盐和鹰嘴豆蛋白聚合物基质包封姜黄素提高稳定性、缓释性和生物可及性的效果
IF 1.9
Food Hydrocolloids for Health Pub Date : 2023-01-22 DOI: 10.1016/j.fhfh.2023.100119
I. Farrah Shakoor , Geethi K. Pamunuwa , D. Nedra Karunaratne
{"title":"Efficacy of alginate and chickpea protein polymeric matrices in encapsulating curcumin for improved stability, sustained release and bioaccessibility","authors":"I. Farrah Shakoor ,&nbsp;Geethi K. Pamunuwa ,&nbsp;D. Nedra Karunaratne","doi":"10.1016/j.fhfh.2023.100119","DOIUrl":"10.1016/j.fhfh.2023.100119","url":null,"abstract":"<div><p>The present study compares the ubiquitously used alginate with seldom used chickpea protein as matrices for encapsulating curcumin, in terms of stability, <em>in vitro</em> release and bioaccessibility. Alginate and chickpea protein particles prepared via ionic gelation and isoelectric precipitation methods, respectively, were in the submicron range showing high encapsulation efficiencies of above 90%. Encapsulated particles stored in dark refrigerated conditions displayed greater stability of curcumin. <em>In vitro</em> release of curcumin from both encapsulated particles exhibited pH-dependent slow controlled release. However, alginate particles were more promising due to a protective role performed at gastric pH. The release profiles of curcumin from alginate and chickpea protein particles were best described by First order and Weibull models at pH 2 respectively, while those were well described by Higuchi and Zero order models at pH 6.8 respectively. Accordingly, release of curcumin from both encapsulated particles displayed diffusional controlled release at pH 2 while that from both particles showed diffusion-swelling controlled release at pH 6.8. Bioaccessibility of curcumin from both matrices after intestinal digestion was around 50% while that of free curcumin was approximately 18%. Overall, results point to alginate having an advantage over the chickpea protein matrix for safe efficacious oral delivery of curcumin. Thus, encapsulation of curcumin in alginate may be a promising method for the engineering of curcumin incorporated food with enhanced properties.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41746908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Cruciferin improves stress resistance and simulated gastrointestinal survival of probiotic Limosilactobacillus reuteri in the model encapsulation system 十字花素在模型封装系统中提高益生菌罗伊氏乳酸杆菌的抗逆性和模拟胃肠道存活
IF 1.9
Food Hydrocolloids for Health Pub Date : 2023-01-20 DOI: 10.1016/j.fhfh.2023.100118
Ali Akbari , Michael G. Gänzle , Jianping Wu
{"title":"Cruciferin improves stress resistance and simulated gastrointestinal survival of probiotic Limosilactobacillus reuteri in the model encapsulation system","authors":"Ali Akbari ,&nbsp;Michael G. Gänzle ,&nbsp;Jianping Wu","doi":"10.1016/j.fhfh.2023.100118","DOIUrl":"https://doi.org/10.1016/j.fhfh.2023.100118","url":null,"abstract":"<div><p>Encapsulation is a viable strategy to improve the stability and survival of probiotics during processing, storage, and consumption. Cruciferin, a major canola protein with high denaturation temperature and resistance to gastric degradation, has potential for encapsulation and protection of probiotics against harsh conditions in processing and gastrointestinal tract. Cruciferin/alginate capsules were fabricated to encapsulate probiotics, and were characterized using confocal and scanning electron microscopy (SEM). The bacterial viability was studied during storage, processing, and gastro-intestinal transit. <em>Limosilactobacillus reuteri</em> TMW 1.656 was encapsulated in spherical cruciferin/alginate capsules (2.2 ± 0.1 mm) prepared using an extrusion method. SEM images of the capsules showed that the bacteria were entrapped within the porous structure which was formed by the complexation of cruciferin and alginate. The confocal microscopy images confirmed that cruciferin and alginate were homogeneously distributed throughout the capsules. The shelf life of the bacteria in the presence of cruciferin and alginate increased up to 8 weeks at 4 °C, while unencapsulated (free) bacteria lost their viability after 2 weeks storage. The heat resistance of encapsulated bacteria exposed to 65 °C and 70 °C was improved by up to ∼ 4 and 2 log cycles, respectively, compared to unencapsulated bacteria. Encapsulation also protected <em>L. reuteri</em> against gastric low pH and enzymes; the viability was 3 logs higher when compared to unencapsulated bacteria. The capsules were degraded in simulated intestinal fluid, leading to the release of the encapsulated bacteria, whereas the wall materials increased the resistance of released bacteria to bile salts. Comparison between the viability of unencapsulated bacteria in presence of cruciferin/alginate mixtures and bacteria encapsulated in the capsules revealed that capsule formation provided physical barriers to the harsh conditions and played a key role in the protection of bacteria. This study showed that cruciferin/alginate capsules are capable to improve stability and shelf life of <em>Limosilactobacillus reuteri.</em></p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49736752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Reduction of FODMAPs and amylase-trypsin inhibitors in wheat: A review 小麦中FODMAPs和淀粉酶-胰蛋白酶抑制剂的减少:综述
IF 1.9
Food Hydrocolloids for Health Pub Date : 2023-01-10 DOI: 10.1016/j.fhfh.2023.100117
Prince G. Boakye, Akua Y. Okyere, George A. Annor
{"title":"Reduction of FODMAPs and amylase-trypsin inhibitors in wheat: A review","authors":"Prince G. Boakye,&nbsp;Akua Y. Okyere,&nbsp;George A. Annor","doi":"10.1016/j.fhfh.2023.100117","DOIUrl":"https://doi.org/10.1016/j.fhfh.2023.100117","url":null,"abstract":"<div><p>Consumption of fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) can promote gut health in individuals with a healthy gastrointestinal tract. However, FODMAPs, as well as amylase-trypsin inhibitors (ATIs), have been identified as potential triggers of intestinal symptoms in irritable bowel syndrome (IBS) and non-celiac wheat sensitivity (NCWS) patients. Wheat is a major staple worldwide, and hence, accounts for a large proportion of the intake of FODMAPs and ATIs. Thus, this paper aims to provide an overview of the strategies utilized in reducing the levels of FODMAPs and ATIs in wheat.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49736751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Co-ingestion with γ-cyclodextrin improves bioavailability of α-linolenic acid in Perilla frutescens seed oil 与γ-环糊精共食可提高紫苏籽油中α-亚麻酸的生物利用度
IF 1.9
Food Hydrocolloids for Health Pub Date : 2023-01-10 DOI: 10.1016/j.fhfh.2023.100116
Keisuke Yoshikiyo , Miho Takahashi , Yu Narumiya , Mikito Honda , Keita Iwasaki , Mika Ishigaki , Edward G. Nagato , Hemanth Noothalapati , Hidehisa Shimizu , Kaeko Murota , Tatsuyuki Yamamoto
{"title":"Co-ingestion with γ-cyclodextrin improves bioavailability of α-linolenic acid in Perilla frutescens seed oil","authors":"Keisuke Yoshikiyo ,&nbsp;Miho Takahashi ,&nbsp;Yu Narumiya ,&nbsp;Mikito Honda ,&nbsp;Keita Iwasaki ,&nbsp;Mika Ishigaki ,&nbsp;Edward G. Nagato ,&nbsp;Hemanth Noothalapati ,&nbsp;Hidehisa Shimizu ,&nbsp;Kaeko Murota ,&nbsp;Tatsuyuki Yamamoto","doi":"10.1016/j.fhfh.2023.100116","DOIUrl":"10.1016/j.fhfh.2023.100116","url":null,"abstract":"<div><p>The present study aimed to determine the effects of ingesting perilla oil derived from the seeds of <em>Perilla frutescens</em> as an inclusion complex with γ-cyclodextrin (γ-CD) in a six-week study, and to elucidate the role of γ-CD in the assimilation of perilla oil. Plasma α-linolenic acid (18:3n-3) levels were significantly higher in rats fed a diet containing this inclusion complex compared to those fed the same amount of perilla oil without γ-CD, indicating that γ-CD enhances perilla oil bioavailability. An <em>in vitro</em> analysis of lipolysis revealed that perilla oil was more resistant to porcine pancreatic lipase than soybean oil, a commonly used lipid source in animal diets. However, adding γ-CD accelerated perilla oil lipolysis, which may explain the elevated 18:3n-3 plasma levels in rats fed the inclusion complex. These findings suggest a more efficient way to increase physiological levels of 18:3n-3 and longer n-3 fatty acids when ingesting perilla oil.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46205271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Analysis of hydrocolloid excipients for controlled delivery of high-value microencapsulated prickly pear extracts 用于高价值微胶囊刺梨提取物控制递送的水胶体赋形剂分析
IF 1.9
Food Hydrocolloids for Health Pub Date : 2023-01-06 DOI: 10.1016/j.fhfh.2023.100115
Ana Fernández-Repetto , Andrea Gómez-Maqueo , Tomás García-Cayuela , Daniel Guajardo-Flores , M. Pilar Cano
{"title":"Analysis of hydrocolloid excipients for controlled delivery of high-value microencapsulated prickly pear extracts","authors":"Ana Fernández-Repetto ,&nbsp;Andrea Gómez-Maqueo ,&nbsp;Tomás García-Cayuela ,&nbsp;Daniel Guajardo-Flores ,&nbsp;M. Pilar Cano","doi":"10.1016/j.fhfh.2023.100115","DOIUrl":"10.1016/j.fhfh.2023.100115","url":null,"abstract":"<div><p>Prickly pears (<em>Opuntia ficus-indica</em>) are potential sources of functional ingredients because they are rich in betalains and phenolic compounds. However, mentioned bioactives may degrade during storage when exposed to air, light, and heat which could limit their application. To increase the stability and bioaccessibility of prickly pear extracts, we compared the ultrasound-assisted freeze-dried microencapsulation of seven excipient mixtures. The physical and physico-chemical properties (humidity, hygroscopicity, thermal analysis and morphology) and the qualitative and quantitative analysis of betalains and phenolic compounds (measured by high performance liquid chromatography) were analysed in each microparticle formulation. Stability-improving factors such as low humidity and hygroscopicity were observed in all microparticles. However, microparticle morphology was influenced by the excipient formulation. Encapsulation efficiency was higher than 60% for betalains and phenolic acids, however, flavonoids encapsulation efficiency was 14–35%. Based on the previous, the three best microparticles were selected: 100% maltodextrin (E2); 50% maltodextrin, 25% microcrystalline cellulose, 15% hydroxyl‑propyl-methyl cellulose, and 10% xanthan gum (E5); and 100% β-cyclodextrin (E7). A static in vitro gastrointestinal digestion (INFOGEST method) was performed with these microparticles where the quantitative analysis of the bioactive compounds (HPLC) and their bioaccessibility was assessed. The bioaccessibility of bioactive compounds in encapsulated prickly pear extracts was improved when compared to the control. Microparticles containing maltodextrin and microcrystalline cellulose (E2) had the highest bioaccessibility and showed potential for the future formulation of functional foods.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46901078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Fabrication and characterization of a bilayered system enabling sustained release of bioflavonoids derived from mandarin biomass 柑橘生物质生物类黄酮缓释双层体系的制备与表征
IF 1.9
Food Hydrocolloids for Health Pub Date : 2022-12-22 DOI: 10.1016/j.fhfh.2022.100114
Niharika Kaushal, Minni Singh
{"title":"Fabrication and characterization of a bilayered system enabling sustained release of bioflavonoids derived from mandarin biomass","authors":"Niharika Kaushal,&nbsp;Minni Singh","doi":"10.1016/j.fhfh.2022.100114","DOIUrl":"10.1016/j.fhfh.2022.100114","url":null,"abstract":"<div><p>Food-grade hydrogels, those prepared with Generally Recognized as Safe (GRAS) polymers, are promising delivery systems. In this work, alginate hydrogels were studied for their ability to uphold flavonoids laden poly-lactic-co-glycolic acid (PLGA) nanoparticles, and their subsequent release pattern was observed through <em>in vitro</em> gastrointestinal environments. Flavonoids were derived from mandarin peels, and consisted of polymethoxyflavones, chiefly tangeretin and nobiletin, and flavanones, chiefly naringenin. Incorporating these into nanoparticles prepared from GRAS classified PLGA, hereinafter referred to as flavonoids-PLGA nanoparticles, offered the first layer of protection, which were then embedded into alginate hydrogels, offering the second layer of protection. This bilayered system was developed to ensure guarded passage of the bioactives through the severe gastric environment, which would otherwise lead to presystemic metabolism of the flavonoids, rendering them ineffective. The gels were characterised and a 6.0% alginate hydrogel was considered optimal as it offered a dense network, as confirmed by a field emission scanning electron microscope (FE-SEM) image, and a low porosity, which ensured retention of the nanoparticles. Gel rheology revealed the shear thinning behavior of hydrogels, and high resistance to deformation was observed for 6% hydrogel when subjected to a load of 500N. Subjecting the ensemble to gastrointestinal environments showed a negligible 4.0% release of flavonoids in the first 2 hours of the gastric phase, followed by a sustained release through the next 10 hours in the intestinal environment, as confirmed by mass spectrometry (MS) profiles. Confocal laser scanning microscope (CLSM) images of the hydrogel clearly revealed the pH-responsive swelling and release of the nanoparticles from the hydrogel in the intestinal phase. It is envisaged that these, and other similar findings, would eventually manifest into ‘functional hydrogels’ delivery systems that bear the ability to incorporate nutraceuticals whilst retaining their functionality, as viable products in the near future.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43946749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Shellac/caseinate as a composite nanocarrier for improved bioavailability of quercetin 紫胶/酪蛋白酸酯复合纳米载体提高槲皮素的生物利用度
IF 1.9
Food Hydrocolloids for Health Pub Date : 2022-12-20 DOI: 10.1016/j.fhfh.2022.100113
Shikha Shiromani , M.M. Patil , Ilaiyaraja Nallamuthu , Rajamanickam R , Dongzagin Singsit , T. Anand
{"title":"Shellac/caseinate as a composite nanocarrier for improved bioavailability of quercetin","authors":"Shikha Shiromani ,&nbsp;M.M. Patil ,&nbsp;Ilaiyaraja Nallamuthu ,&nbsp;Rajamanickam R ,&nbsp;Dongzagin Singsit ,&nbsp;T. Anand","doi":"10.1016/j.fhfh.2022.100113","DOIUrl":"10.1016/j.fhfh.2022.100113","url":null,"abstract":"<div><p>In the present study, quercetin (a flavonoid) was encapsulated using biodegradable composite polymers of sodium caseinate and shellac for its improved bioavailability. The quercetin-loaded shellac-caseinate composite nanoparticles (QSNPs) were prepared by anti-solvent precipitation method. Under the optimal combinations of process factors (sodium caseinate 2.5%, shellac 2% and pH 6.8,) the nanocomplexes had the sizes, PDI, zeta potential and encapsulation efficiency of 222 ± 0.19 nm, 0.11, -33.6 mV and 79%, respectively. The optimised nanocolloids were characterised using SEM and AFM microscopes for morphological features. The <em>in vitro</em> release study in simulated gastric and intestinal fluids showed a sustained release of the quercetin from the nanostructures. In rats, the oral administration of single equivalent dosage of quercetin (50 mg/kg b.wt) showed 18.6-fold increase in the relative bioavailability for QSNPs compared to suspension form. These results suggest that the composites of shellac/caseinate matrices can be promising carrier for the oral delivery of hydrophobic phytocompounds with enhanced therapeutic properties in various foods and pharmaceutical applications.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46147122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信