I. Farrah Shakoor , Geethi K. Pamunuwa , D. Nedra Karunaratne
{"title":"Efficacy of alginate and chickpea protein polymeric matrices in encapsulating curcumin for improved stability, sustained release and bioaccessibility","authors":"I. Farrah Shakoor , Geethi K. Pamunuwa , D. Nedra Karunaratne","doi":"10.1016/j.fhfh.2023.100119","DOIUrl":"10.1016/j.fhfh.2023.100119","url":null,"abstract":"<div><p>The present study compares the ubiquitously used alginate with seldom used chickpea protein as matrices for encapsulating curcumin, in terms of stability, <em>in vitro</em> release and bioaccessibility. Alginate and chickpea protein particles prepared via ionic gelation and isoelectric precipitation methods, respectively, were in the submicron range showing high encapsulation efficiencies of above 90%. Encapsulated particles stored in dark refrigerated conditions displayed greater stability of curcumin. <em>In vitro</em> release of curcumin from both encapsulated particles exhibited pH-dependent slow controlled release. However, alginate particles were more promising due to a protective role performed at gastric pH. The release profiles of curcumin from alginate and chickpea protein particles were best described by First order and Weibull models at pH 2 respectively, while those were well described by Higuchi and Zero order models at pH 6.8 respectively. Accordingly, release of curcumin from both encapsulated particles displayed diffusional controlled release at pH 2 while that from both particles showed diffusion-swelling controlled release at pH 6.8. Bioaccessibility of curcumin from both matrices after intestinal digestion was around 50% while that of free curcumin was approximately 18%. Overall, results point to alginate having an advantage over the chickpea protein matrix for safe efficacious oral delivery of curcumin. Thus, encapsulation of curcumin in alginate may be a promising method for the engineering of curcumin incorporated food with enhanced properties.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"3 ","pages":"Article 100119"},"PeriodicalIF":1.9,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41746908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cruciferin improves stress resistance and simulated gastrointestinal survival of probiotic Limosilactobacillus reuteri in the model encapsulation system","authors":"Ali Akbari , Michael G. Gänzle , Jianping Wu","doi":"10.1016/j.fhfh.2023.100118","DOIUrl":"https://doi.org/10.1016/j.fhfh.2023.100118","url":null,"abstract":"<div><p>Encapsulation is a viable strategy to improve the stability and survival of probiotics during processing, storage, and consumption. Cruciferin, a major canola protein with high denaturation temperature and resistance to gastric degradation, has potential for encapsulation and protection of probiotics against harsh conditions in processing and gastrointestinal tract. Cruciferin/alginate capsules were fabricated to encapsulate probiotics, and were characterized using confocal and scanning electron microscopy (SEM). The bacterial viability was studied during storage, processing, and gastro-intestinal transit. <em>Limosilactobacillus reuteri</em> TMW 1.656 was encapsulated in spherical cruciferin/alginate capsules (2.2 ± 0.1 mm) prepared using an extrusion method. SEM images of the capsules showed that the bacteria were entrapped within the porous structure which was formed by the complexation of cruciferin and alginate. The confocal microscopy images confirmed that cruciferin and alginate were homogeneously distributed throughout the capsules. The shelf life of the bacteria in the presence of cruciferin and alginate increased up to 8 weeks at 4 °C, while unencapsulated (free) bacteria lost their viability after 2 weeks storage. The heat resistance of encapsulated bacteria exposed to 65 °C and 70 °C was improved by up to ∼ 4 and 2 log cycles, respectively, compared to unencapsulated bacteria. Encapsulation also protected <em>L. reuteri</em> against gastric low pH and enzymes; the viability was 3 logs higher when compared to unencapsulated bacteria. The capsules were degraded in simulated intestinal fluid, leading to the release of the encapsulated bacteria, whereas the wall materials increased the resistance of released bacteria to bile salts. Comparison between the viability of unencapsulated bacteria in presence of cruciferin/alginate mixtures and bacteria encapsulated in the capsules revealed that capsule formation provided physical barriers to the harsh conditions and played a key role in the protection of bacteria. This study showed that cruciferin/alginate capsules are capable to improve stability and shelf life of <em>Limosilactobacillus reuteri.</em></p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"3 ","pages":"Article 100118"},"PeriodicalIF":1.9,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49736752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reduction of FODMAPs and amylase-trypsin inhibitors in wheat: A review","authors":"Prince G. Boakye, Akua Y. Okyere, George A. Annor","doi":"10.1016/j.fhfh.2023.100117","DOIUrl":"https://doi.org/10.1016/j.fhfh.2023.100117","url":null,"abstract":"<div><p>Consumption of fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) can promote gut health in individuals with a healthy gastrointestinal tract. However, FODMAPs, as well as amylase-trypsin inhibitors (ATIs), have been identified as potential triggers of intestinal symptoms in irritable bowel syndrome (IBS) and non-celiac wheat sensitivity (NCWS) patients. Wheat is a major staple worldwide, and hence, accounts for a large proportion of the intake of FODMAPs and ATIs. Thus, this paper aims to provide an overview of the strategies utilized in reducing the levels of FODMAPs and ATIs in wheat.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"3 ","pages":"Article 100117"},"PeriodicalIF":1.9,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49736751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Co-ingestion with γ-cyclodextrin improves bioavailability of α-linolenic acid in Perilla frutescens seed oil","authors":"Keisuke Yoshikiyo , Miho Takahashi , Yu Narumiya , Mikito Honda , Keita Iwasaki , Mika Ishigaki , Edward G. Nagato , Hemanth Noothalapati , Hidehisa Shimizu , Kaeko Murota , Tatsuyuki Yamamoto","doi":"10.1016/j.fhfh.2023.100116","DOIUrl":"10.1016/j.fhfh.2023.100116","url":null,"abstract":"<div><p>The present study aimed to determine the effects of ingesting perilla oil derived from the seeds of <em>Perilla frutescens</em> as an inclusion complex with γ-cyclodextrin (γ-CD) in a six-week study, and to elucidate the role of γ-CD in the assimilation of perilla oil. Plasma α-linolenic acid (18:3n-3) levels were significantly higher in rats fed a diet containing this inclusion complex compared to those fed the same amount of perilla oil without γ-CD, indicating that γ-CD enhances perilla oil bioavailability. An <em>in vitro</em> analysis of lipolysis revealed that perilla oil was more resistant to porcine pancreatic lipase than soybean oil, a commonly used lipid source in animal diets. However, adding γ-CD accelerated perilla oil lipolysis, which may explain the elevated 18:3n-3 plasma levels in rats fed the inclusion complex. These findings suggest a more efficient way to increase physiological levels of 18:3n-3 and longer n-3 fatty acids when ingesting perilla oil.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"3 ","pages":"Article 100116"},"PeriodicalIF":1.9,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46205271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana Fernández-Repetto , Andrea Gómez-Maqueo , Tomás García-Cayuela , Daniel Guajardo-Flores , M. Pilar Cano
{"title":"Analysis of hydrocolloid excipients for controlled delivery of high-value microencapsulated prickly pear extracts","authors":"Ana Fernández-Repetto , Andrea Gómez-Maqueo , Tomás García-Cayuela , Daniel Guajardo-Flores , M. Pilar Cano","doi":"10.1016/j.fhfh.2023.100115","DOIUrl":"10.1016/j.fhfh.2023.100115","url":null,"abstract":"<div><p>Prickly pears (<em>Opuntia ficus-indica</em>) are potential sources of functional ingredients because they are rich in betalains and phenolic compounds. However, mentioned bioactives may degrade during storage when exposed to air, light, and heat which could limit their application. To increase the stability and bioaccessibility of prickly pear extracts, we compared the ultrasound-assisted freeze-dried microencapsulation of seven excipient mixtures. The physical and physico-chemical properties (humidity, hygroscopicity, thermal analysis and morphology) and the qualitative and quantitative analysis of betalains and phenolic compounds (measured by high performance liquid chromatography) were analysed in each microparticle formulation. Stability-improving factors such as low humidity and hygroscopicity were observed in all microparticles. However, microparticle morphology was influenced by the excipient formulation. Encapsulation efficiency was higher than 60% for betalains and phenolic acids, however, flavonoids encapsulation efficiency was 14–35%. Based on the previous, the three best microparticles were selected: 100% maltodextrin (E2); 50% maltodextrin, 25% microcrystalline cellulose, 15% hydroxyl‑propyl-methyl cellulose, and 10% xanthan gum (E5); and 100% β-cyclodextrin (E7). A static in vitro gastrointestinal digestion (INFOGEST method) was performed with these microparticles where the quantitative analysis of the bioactive compounds (HPLC) and their bioaccessibility was assessed. The bioaccessibility of bioactive compounds in encapsulated prickly pear extracts was improved when compared to the control. Microparticles containing maltodextrin and microcrystalline cellulose (E2) had the highest bioaccessibility and showed potential for the future formulation of functional foods.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"3 ","pages":"Article 100115"},"PeriodicalIF":1.9,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46901078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fabrication and characterization of a bilayered system enabling sustained release of bioflavonoids derived from mandarin biomass","authors":"Niharika Kaushal, Minni Singh","doi":"10.1016/j.fhfh.2022.100114","DOIUrl":"10.1016/j.fhfh.2022.100114","url":null,"abstract":"<div><p>Food-grade hydrogels, those prepared with Generally Recognized as Safe (GRAS) polymers, are promising delivery systems. In this work, alginate hydrogels were studied for their ability to uphold flavonoids laden poly-lactic-co-glycolic acid (PLGA) nanoparticles, and their subsequent release pattern was observed through <em>in vitro</em> gastrointestinal environments. Flavonoids were derived from mandarin peels, and consisted of polymethoxyflavones, chiefly tangeretin and nobiletin, and flavanones, chiefly naringenin. Incorporating these into nanoparticles prepared from GRAS classified PLGA, hereinafter referred to as flavonoids-PLGA nanoparticles, offered the first layer of protection, which were then embedded into alginate hydrogels, offering the second layer of protection. This bilayered system was developed to ensure guarded passage of the bioactives through the severe gastric environment, which would otherwise lead to presystemic metabolism of the flavonoids, rendering them ineffective. The gels were characterised and a 6.0% alginate hydrogel was considered optimal as it offered a dense network, as confirmed by a field emission scanning electron microscope (FE-SEM) image, and a low porosity, which ensured retention of the nanoparticles. Gel rheology revealed the shear thinning behavior of hydrogels, and high resistance to deformation was observed for 6% hydrogel when subjected to a load of 500N. Subjecting the ensemble to gastrointestinal environments showed a negligible 4.0% release of flavonoids in the first 2 hours of the gastric phase, followed by a sustained release through the next 10 hours in the intestinal environment, as confirmed by mass spectrometry (MS) profiles. Confocal laser scanning microscope (CLSM) images of the hydrogel clearly revealed the pH-responsive swelling and release of the nanoparticles from the hydrogel in the intestinal phase. It is envisaged that these, and other similar findings, would eventually manifest into ‘functional hydrogels’ delivery systems that bear the ability to incorporate nutraceuticals whilst retaining their functionality, as viable products in the near future.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"3 ","pages":"Article 100114"},"PeriodicalIF":1.9,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43946749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shikha Shiromani , M.M. Patil , Ilaiyaraja Nallamuthu , Rajamanickam R , Dongzagin Singsit , T. Anand
{"title":"Shellac/caseinate as a composite nanocarrier for improved bioavailability of quercetin","authors":"Shikha Shiromani , M.M. Patil , Ilaiyaraja Nallamuthu , Rajamanickam R , Dongzagin Singsit , T. Anand","doi":"10.1016/j.fhfh.2022.100113","DOIUrl":"10.1016/j.fhfh.2022.100113","url":null,"abstract":"<div><p>In the present study, quercetin (a flavonoid) was encapsulated using biodegradable composite polymers of sodium caseinate and shellac for its improved bioavailability. The quercetin-loaded shellac-caseinate composite nanoparticles (QSNPs) were prepared by anti-solvent precipitation method. Under the optimal combinations of process factors (sodium caseinate 2.5%, shellac 2% and pH 6.8,) the nanocomplexes had the sizes, PDI, zeta potential and encapsulation efficiency of 222 ± 0.19 nm, 0.11, -33.6 mV and 79%, respectively. The optimised nanocolloids were characterised using SEM and AFM microscopes for morphological features. The <em>in vitro</em> release study in simulated gastric and intestinal fluids showed a sustained release of the quercetin from the nanostructures. In rats, the oral administration of single equivalent dosage of quercetin (50 mg/kg b.wt) showed 18.6-fold increase in the relative bioavailability for QSNPs compared to suspension form. These results suggest that the composites of shellac/caseinate matrices can be promising carrier for the oral delivery of hydrophobic phytocompounds with enhanced therapeutic properties in various foods and pharmaceutical applications.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"3 ","pages":"Article 100113"},"PeriodicalIF":1.9,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46147122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bioactive properties of peptide fractions from Brazilian soy protein hydrolysates: In silico evaluation and experimental evidence","authors":"T.C. Farias , J.P. Abreu , J.P.S. Oliveira , A.F. Macedo , A Rodríguez-Vega , A.P. Tonin , F.S.N. Cardoso , E.C. Meurer , M.G.B. Koblitz","doi":"10.1016/j.fhfh.2022.100112","DOIUrl":"10.1016/j.fhfh.2022.100112","url":null,"abstract":"<div><p>Soybeans are a known source of dietary proteins and potential bioactive peptides. In this study, a protein hydrolysate from soybean protein concentrate was produced using papain. The peptides were separated by ultrafiltration (< and > 3 kDa, LMMH (low molecular mass) and HMMH (high molecular mass), respectively) and sequenced through LC-MS/MS. To obtain a thorough identification of the peptides in the hydrolysate, different analysis methods and bioinformatics techniques were applied, covering a molecular mass range from more than 480 Da up to small dipeptides. The antioxidant and the inhibitory α -glucosidase and lipase potentials were evaluated by different <em>in vitro</em> tests. Sixty-nine peptides were identified in the HMMH fraction and 32 in LMMH, but only 16 matched the 118 sequences obtained by <em>in silico</em> simulated hydrolysis. Unlike previous reports, the HMMH fraction showed higher antioxidant activity, by all 5 <em>in vitro</em> methods applied, which was not accompanied by the <em>in silico</em> evaluation. Both high and low molecular mass fractions showed similar inhibitory activities against α -glucosidase and pancreatic lipase. LMMH, however, showed better results for α -glucosidase inhibition (IC50 = 0,94), in agreement with the <em>in silico</em> evaluation. This combination of bioactivities makes the fractions of this hydrolysate potential food ingredients with the possible ability to delay the lipid peroxidation of meat products, limiting the digestion of lipids in the product and also with the potential to delay the digestion of carbohydrates ingested in the same meal.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"3 ","pages":"Article 100112"},"PeriodicalIF":1.9,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48102975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shiyuan Mao , Lovedeep Kaur , Tai-Hua Mu , Jaspreet Singh
{"title":"Preparation and characterisation of plant and dairy-based high protein Chinese steamed breads (mantou): Microstructural characteristics and gastro-small intestinal starch digestion in vitro","authors":"Shiyuan Mao , Lovedeep Kaur , Tai-Hua Mu , Jaspreet Singh","doi":"10.1016/j.fhfh.2022.100111","DOIUrl":"10.1016/j.fhfh.2022.100111","url":null,"abstract":"<div><p>The effects of dairy and plant protein addition on microstructural characteristics and <em>in vitro</em> gastro-small intestinal starch digestion characteristics of Chinese steamed breads (CSBs) were studied. Breads containing rennet casein (RC) and a mixture of soy protein isolate and milk protein concentrate (SM) at two different levels (RC I, RC II; SM I, SM II) were prepared. Microstructural characteristics of the undigested and digested control (100% wheat flour) bread and high protein steam bread (HPCSB) versions were compared through scanning electron microscopy. The compact microstructure of HPCSBs displayed a network of proteins wrapped around starch granules and had fewer air cells compared to the control. The addition of both proteins influenced the microstructure of HPCSBs, which in turn affected their textural and starch digestion properties. The <em>in vitro</em> starch digestion of control CSB and HPCSBs confirmed that the addition of proteins is capable of lowering the starch hydrolysis (%). The highest starch hydrolysis was observed for the control wheat bread, followed by SM1 > RC I > SM II and RC II at the end of the small-intestinal digestion. The estimated glycaemic indices (eGI) for all HPCSBs were statistically lower than the control CSB. In comparison to control CSB, the microstructure of HPCSBs appeared more irregular, less porous, and compact during gastric and small intestinal digestion.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"3 ","pages":"Article 100111"},"PeriodicalIF":1.9,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46704320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nemany A.N. Hanafy , Elsayed I. Salim , Magdy E. Mahfouz , Eman A. Eltonouby , Izar H. Hamed
{"title":"Fabrication and characterization of bee pollen extract nanoparticles: Their potential in combination therapy against human A549 lung cancer cells","authors":"Nemany A.N. Hanafy , Elsayed I. Salim , Magdy E. Mahfouz , Eman A. Eltonouby , Izar H. Hamed","doi":"10.1016/j.fhfh.2022.100110","DOIUrl":"10.1016/j.fhfh.2022.100110","url":null,"abstract":"<div><p>Bee pollen extract (BPE) based polymer nanoparticles (BPENP) were fabricated in the current study by using bovine serum albumin (BSA) and the complex was then coated by folic acid conjugated protamine to be targeted for cancer cells. Spectroscopic and microscopic methods were used to characterize the resultant nanoparticles. High flavonoid and polyphenolic contents were detected by HPLC. At 336 nm, it was found that BPENP provided the highest absorption by UV. The average particle size ranged between 25 and 40 nm. The inhibitory effects and IC50 values of the acquired BPE, BPENP, Avastin, or their combination at 24 and 48 h were detected against A549 lung cancer cells. The combination therapy assay of BPENP and Avastin revealed a very significant synergism between the two drugs with a low combination index (CI). These therapies particularly the combination therapy have significantly affected the expression of the <em>HRAS, MAPK,</em> and apoptotic genes such as <em>Bax, Bcl-2,</em> and <em>Caspase 3</em>. It was established that obtained BPENP might be employed to support the administration of Avastin for the treatment of lung cancer.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"3 ","pages":"Article 100110"},"PeriodicalIF":1.9,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45414487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}