Food Hydrocolloids for Health最新文献

筛选
英文 中文
Increase in blood-transferable linear and cyclic dipeptides in human plasma following ingestion of elastin hydrolysate 摄入弹性蛋白水解物后,血浆中可血液转移的线状和环状二肽增加
IF 4.6
Food Hydrocolloids for Health Pub Date : 2024-12-01 DOI: 10.1016/j.fhfh.2024.100188
Yu Iwasaki , Mikako Sato , Yoshinori Katakura , Yukihiro Sugawara , Yasutaka Shigemura
{"title":"Increase in blood-transferable linear and cyclic dipeptides in human plasma following ingestion of elastin hydrolysate","authors":"Yu Iwasaki ,&nbsp;Mikako Sato ,&nbsp;Yoshinori Katakura ,&nbsp;Yukihiro Sugawara ,&nbsp;Yasutaka Shigemura","doi":"10.1016/j.fhfh.2024.100188","DOIUrl":"10.1016/j.fhfh.2024.100188","url":null,"abstract":"<div><div>In this study, we analyzed the absorption of linear and cyclic dipeptides containing Gly, Pro, Ala, and Val by human blood following the ingestion of elastin hydrolysate. As in previous studies, Pro-Gly was transferred into blood at the highest concentration (Cmax; 14.63 nmol/mL). Moreover, this is the first study to show that Gly-Pro, Pro-Ala, Gly-Ala, cyclo(Gly-Pro), cyclo(Pro-Ala), cyclo(Pro-Val) and cyclo(Gly-Ala) also increase in blood after the ingestion of elastin hydrolysate. The contents of these cyclic dipeptides, which amounts in elastin hydrolysate is verry small, suggested that elastin digestives may be cyclized during digestion and absorption by human blood following the ingestion of elastin hydrolysate. This study suggested that these blood-transferrable linear and cyclic dipeptides could be candidates for elastin-derived bioactive peptides, and this finding consequently led to the further experiments that has been required for clarifying the bioactivities and mechanisms of beneficial effects of elastin hydrolysate.</div></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"6 ","pages":"Article 100188"},"PeriodicalIF":4.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142745075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Casein and acryl amide complexation and bio-adhesive polymeric nano micelles influence on vortioxetine dissolution, penetration enhancement and in vivo absorption 酪蛋白与丙烯酰胺络合及生物黏附聚合物纳米胶束对沃替西汀溶出、渗透增强及体内吸收的影响
IF 4.6
Food Hydrocolloids for Health Pub Date : 2024-12-01 DOI: 10.1016/j.fhfh.2024.100189
Samaa Abdullah , Nabil A. Alhakamy , Hatim S. AlKhatib , Rana Abu Huwaij , Hadil Alahdal , Abeer A. Altamimi
{"title":"Casein and acryl amide complexation and bio-adhesive polymeric nano micelles influence on vortioxetine dissolution, penetration enhancement and in vivo absorption","authors":"Samaa Abdullah ,&nbsp;Nabil A. Alhakamy ,&nbsp;Hatim S. AlKhatib ,&nbsp;Rana Abu Huwaij ,&nbsp;Hadil Alahdal ,&nbsp;Abeer A. Altamimi","doi":"10.1016/j.fhfh.2024.100189","DOIUrl":"10.1016/j.fhfh.2024.100189","url":null,"abstract":"<div><div>Vortioxetine (VTX) is a new atypical antidepressant used to treat major depression and other mental disorders. Due to its low water solubility, oral absorption, and fast metabolism, VTX has been commercially manufactured and sold as a hydrobromide. Long-term VTX hydrobromide therapy is frequently associated with respiratory irritation and digestive dysfunction. Two techniques were developed for dissolution, swelling, adherence, and penetration enhancements. The techniques were the VTX and casein (CAS) complexation using the maximum loading capacity, and VTX-polymeric nano micelle using the “Sandwich Technique”. This study includes the maximum VTX-CAS binding capacity determination, VTX-CAS complex preparation, polymeric nano micelle encapsulating VTX-CAS complex optimizations, physiochemical characterisations, solubility assessment, VTX release analysis, swelling analysis and mucus-penetrating study of the VTX-CAS complex and VTX polymeric nano micelle in comparison to the VTX raw material. The optimum VTX-polymeric nano micelle dissolution, swelling, adherence, and penetration enhancements were supported by the results of 91.10±16.34 nm, +19 mV zeta-potential, structural arrangements, and enhanced amorphic character with the morphology and size distribution (50–100 nm). The VTX-polymeric nano micelle could serve as an oral alternative to the VTX hydrobromide therapy based on the results of the biocompatibility and <em>in vivo</em> absorption studies for the VTX-polymeric nano micellar system.</div></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"6 ","pages":"Article 100189"},"PeriodicalIF":4.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional properties and toxicological analysis of nanocellulose-based aerogels loaded with polyphenols from Hyeronima macrocarpa berries 纳米纤维素气凝胶的功能特性和毒理学分析--载入了从红豆杉浆果中提取的多酚
IF 4.6
Food Hydrocolloids for Health Pub Date : 2024-11-17 DOI: 10.1016/j.fhfh.2024.100187
Andrés Felipe Alzate-Arbeláez , Farid B. Cortés , Benjamín A. Rojano
{"title":"Functional properties and toxicological analysis of nanocellulose-based aerogels loaded with polyphenols from Hyeronima macrocarpa berries","authors":"Andrés Felipe Alzate-Arbeláez ,&nbsp;Farid B. Cortés ,&nbsp;Benjamín A. Rojano","doi":"10.1016/j.fhfh.2024.100187","DOIUrl":"10.1016/j.fhfh.2024.100187","url":null,"abstract":"<div><div>In this study, the nutraceutical properties of ethanolic extract of <em>Hyeronima macrocarpa</em> fruits, immobilized on nanocellulose-based aerogels (NCAG) synthesized from the seeds were studied. Specifically, bioactives with antioxidant properties of the pulp were determined, NCAG and homologs of acetate (NCAG-A) and sulfate (NCAG-S) were obtained, and characterized from the seed, the aerogels loaded with antioxidants were studied to determine the anti-radical activity, digestion patterns, protein oxidation inhibition, and toxicological properties. The berries presented a high anthocyanin content of 1317.4 mg C3G/100 g FW and ORAC value ​​of 12,732 µmol Trolox/100 g FW, which make an important source of antioxidants. The seeds presented cellulose content of 61.4 % with a NC yield of 38.4 %. NCAG and their surface homologs were successfully synthesized and characterized by FTIR, DLS, and TEM finding the characteristic bands of the main functional groups, NC presented particle sizes ranging from 64 to 141 nm, BET analysis showed surface areas of 71.1, 102.3, and 183.5 m<sup>2</sup>/g for NCAG-A, NCAG, and NCAG-S, respectively, and pore sizes of 36–38 nm called mesopores. NCAG presented the highest capacity to trap reactive oxygen species (106.8 mg catechin Eq./g., 86.5 % OH• trapped, respectively). All samples showed the capacity to delay the oxidation of a protein system in a dose-dependent manner, with IC<sub>50</sub> values ​​of 70 mg/L (NCAG), 176.3 mg/L (NCAG-A), and 255.6 mg/L (NCAG-S). <em>In vitro</em> digestion showed that NCAG-S was more efficient in delivering anthocyanins under gastric conditions (bioaccessibility of 59.3 %), and NCAG under duodenal conditions (bioaccessibility of 88.2 %). The differences found in samples for the different functional assays can be explained by the various types of interactions generated between the antioxidant molecules and aerogels, in the various media where the analyses are carried out. The results indicate nanocellulose-based aerogels, synthesized from lignocellulosic residues of <em>H. macrocarpa</em> seeds, proved to be porous matrices capable of carrying bioactive substances, and presented interesting properties for the delivery and conservation of antioxidant molecules such as anthocyanins and other polyphenols, achieving an <em>in vitro</em> protective effect against the oxidation of biomolecules.</div></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"6 ","pages":"Article 100187"},"PeriodicalIF":4.6,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Encapsulation of yarrow phenolic compounds in lupin protein nanoemulsions increases stability during gastrointestinal transit and delivery in the colon 将西洋蓍草酚类化合物封装在羽扇豆蛋白纳米乳液中可提高胃肠道转运和结肠输送过程中的稳定性
IF 4.6
Food Hydrocolloids for Health Pub Date : 2024-11-09 DOI: 10.1016/j.fhfh.2024.100186
María de las Nieves Siles-Sánchez , Laura Jaime , Milena Corredig , Susana Santoyo , Elena Arranz
{"title":"Encapsulation of yarrow phenolic compounds in lupin protein nanoemulsions increases stability during gastrointestinal transit and delivery in the colon","authors":"María de las Nieves Siles-Sánchez ,&nbsp;Laura Jaime ,&nbsp;Milena Corredig ,&nbsp;Susana Santoyo ,&nbsp;Elena Arranz","doi":"10.1016/j.fhfh.2024.100186","DOIUrl":"10.1016/j.fhfh.2024.100186","url":null,"abstract":"<div><div>This study aimed to assess the behaviour of phenolic compounds from yarrow extract encapsulated in nanoemulsions during <em>in vitro</em> gastrointestinal digestion. Oil-in-water nanoemulsions were developed using grape seed oil and lupin protein (LPI) as oil phase and emulsifier, respectively. The use of 6 % LPI including 1 mg/mL of yarrow extract resulted in nanoemulsions with a homogeneous particle size distribution (200 nm) and an encapsulation efficiency of 85.6 %. During <em>in vitro</em> gastrointestinal digestion, most of the phenolics remained encapsulated, being protected from degradation. The <em>in vitro</em> bioavailability of the encapsulated phenolics was measured using a cell co-culture model (Caco-2/HT-29MTX). In this regard, nanoemulsions did not increase the bioavailability of yarrow phenolics, instead, they promoted their access to the colon. Finally, the antiproliferative activity was determined in Caco-2 cells, observing that the apical fraction inhibited cancer cells, indicating the bioefficacy of the non-absorbed phenolics. Thus, this study underscores the potential of LPI-stabilized nanoemulsions as a vehicle for protecting and delivering yarrow phenolics to the colon.</div></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"6 ","pages":"Article 100186"},"PeriodicalIF":4.6,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pectin oligosaccharides from Citri Reticulatae Pericarpium ‘Chachi’ promote wound healing in HaCaT keratinocytes by enhancing cell proliferation and migration 枸橼酸果胶寡糖通过增强细胞增殖和迁移促进 HaCaT 角质细胞的伤口愈合
IF 4.6
Food Hydrocolloids for Health Pub Date : 2024-11-09 DOI: 10.1016/j.fhfh.2024.100185
Zhongcan Peng , Shurong Tian , Depo Yang , Longping Zhu , Jianing Zhang , Wenfeng Li , Guodong Zheng , Zhimin Zhao
{"title":"Pectin oligosaccharides from Citri Reticulatae Pericarpium ‘Chachi’ promote wound healing in HaCaT keratinocytes by enhancing cell proliferation and migration","authors":"Zhongcan Peng ,&nbsp;Shurong Tian ,&nbsp;Depo Yang ,&nbsp;Longping Zhu ,&nbsp;Jianing Zhang ,&nbsp;Wenfeng Li ,&nbsp;Guodong Zheng ,&nbsp;Zhimin Zhao","doi":"10.1016/j.fhfh.2024.100185","DOIUrl":"10.1016/j.fhfh.2024.100185","url":null,"abstract":"<div><div>Citri Reticulatae Pericarpium ‘Chachi’ (<em>Citrus reticulata</em> ‘Chachi’) is a traditional Chinese medicine with dual medicinal and dietary uses. As its main component, pectin exhibited various biological activities. However, research and development on it, especially pectin oligosaccharides, remain limited. In this study, ‘Chachi’ pectin oligosaccharides (CPOS) was extracted and prepared for the first time, resulting in the purification of two oligosaccharide components, CPOS3 and CPOS4. Structural characterization of the predominant oligosaccharide, CPOS3, revealed it to be composed of a backbone α-D-Gal<em>p</em>A-(1→2)-α-L-Rha<em>p</em>-(1→4)-α-D-3-OAc-Gal<em>p</em>A-(1→4)-α-D-Gal<em>p</em>A-(1→4)-α-D-Gal<em>p</em>A and a side chain [→5)-α-L-Ara<em>f</em>-(1→]<sub>4</sub> attached at the C-4 of Rha<em>p</em>. Subsequent experiments have shown that CPOS3 can significantly promote the proliferation and migration of human immortalized keratinocyte cell. Further investigation revealed that it facilitated cell proliferation by stimulating DNA synthesis in the S phase of the cell cycle. Additionally, CPOS3 exhibited good thermal stability and rheological characteristics. Based on the good wound healing activity and favorable physicochemical properties of CPOS3, its prospects in the fields of wound dressings and tissue repair are promising.</div></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"6 ","pages":"Article 100185"},"PeriodicalIF":4.6,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green synthesis of silver nanoparticles from mulberry leaf through hot melt extrusion: Enhanced antioxidant, antibacterial, anti-inflammatory, antidiabetic, and anticancer properties 通过热熔挤压从桑叶中绿色合成银纳米粒子:增强抗氧化、抗菌、抗炎、抗糖尿病和抗癌特性
IF 4.6
Food Hydrocolloids for Health Pub Date : 2024-10-10 DOI: 10.1016/j.fhfh.2024.100184
Hyun-Bok Kim , Han-Sol You , Su-ji Ryu , Ha-Yeon Lee , Jong-Suep Baek
{"title":"Green synthesis of silver nanoparticles from mulberry leaf through hot melt extrusion: Enhanced antioxidant, antibacterial, anti-inflammatory, antidiabetic, and anticancer properties","authors":"Hyun-Bok Kim ,&nbsp;Han-Sol You ,&nbsp;Su-ji Ryu ,&nbsp;Ha-Yeon Lee ,&nbsp;Jong-Suep Baek","doi":"10.1016/j.fhfh.2024.100184","DOIUrl":"10.1016/j.fhfh.2024.100184","url":null,"abstract":"<div><div>In this study, mulberry leaf (ML) extract, along with ML processed by hot melt extrusion (HME) (HML), and ML processed by HME with biopolymer (HMLE), were utilized for the eco-friendly synthesis of silver nanoparticles (AgNPs). The physicochemical properties of AgNPs synthesized from ML, HML, and HMLE extracts were characterized using UV–Vis spectrophotometry, zeta potential analysis, transmission electron microscopy (TEM), dynamic light scattering (DLS), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). HME processing enhanced the active ingredients in the ML extract and increased the reduction efficiency of Ag ions. In the ABTS radical scavenging activity assay, AgNPs synthesized from HMLE (F3) exhibited the highest antioxidant activity with the lowest IC<sub>50</sub> value. F3 also demonstrated the lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against <em>Escherichia coli</em> and <em>Staphylococcus aureus</em>. In the disk diffusion test, F3 showed the largest zone of inhibition, indicating the highest antimicrobial activity. In the anti-inflammatory assay using albumin inhibition, F3 achieved the highest inhibition rate, followed by the HMLE extract. In contrast, the extract group exhibited no activity in the antidiabetic test, while the AgNPs group showed the highest antidiabetic activity in F3. Additionally, F3 demonstrated the most potent anticancer activity against breast cancer cells, resulting in the lowest cell viability. Overall, this study suggests that AgNPs synthesized using ML extract enhanced via HME processing exhibit superior physiological activities compared to those synthesized using unprocessed ML extract.</div></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"6 ","pages":"Article 100184"},"PeriodicalIF":4.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silkworm pupae protein-based film incorporated with Catharanthus roseus leaf extract-based nanoparticles enhanced the lipid stability and microbial quality of cheddar cheese 基于蚕蛹蛋白的薄膜与基于长春花叶提取物的纳米颗粒相结合,提高了切达干酪的脂质稳定性和微生物质量
IF 4.6
Food Hydrocolloids for Health Pub Date : 2024-08-06 DOI: 10.1016/j.fhfh.2024.100183
Sabahu Noor , Sunil Kumar , Hina F. Bhat , Abdo Hassoun , Rana Muhammad Aadil , S.A. Khandi , Mandeep S. Azad , Gholamreza Abdi , Zuhaib F. Bhat
{"title":"Silkworm pupae protein-based film incorporated with Catharanthus roseus leaf extract-based nanoparticles enhanced the lipid stability and microbial quality of cheddar cheese","authors":"Sabahu Noor ,&nbsp;Sunil Kumar ,&nbsp;Hina F. Bhat ,&nbsp;Abdo Hassoun ,&nbsp;Rana Muhammad Aadil ,&nbsp;S.A. Khandi ,&nbsp;Mandeep S. Azad ,&nbsp;Gholamreza Abdi ,&nbsp;Zuhaib F. Bhat","doi":"10.1016/j.fhfh.2024.100183","DOIUrl":"10.1016/j.fhfh.2024.100183","url":null,"abstract":"<div><p>The study aimed to develop a silkworm pupae protein-based film for enhancing the lipid oxidative and microbial stability of cheddar cheese. The bioactive properties were imparted to the silkworm pupae protein-based film using an optimum level (2.0%) of <em>Catharanthus roseus</em> leaf extract-based nanoparticles (Cat-Ros-NPs) synthesised following a green method. The cheese samples were packaged within the treated film (T<sub>2</sub>, containing 2.0% Cat-Ros-NPs) and compared with control samples [control (cheese samples without any film), T<sub>0</sub> (cheese samples within the films without any bioactive agent) and T<sub>1</sub> {cheese samples within the films containing 2.0% <em>C. roseus</em> leaf extract (Cat-Ros-Ext)}] during 90 days trial (4±1 °C). The addition of bioactive agents (Cat-Ros-Ext or Cat-Ros-NPs) increased the thickness (µm) as well as density (g/ml) of the film, thereby decreasing the transmittance (%), solubility (%), moisture content (%), and water-vapour transmission rate (mg/mt<sup>2</sup>). Both the bioactive agents increased the redness (a*) and yellowness (b*) whereas decreased the brightness (L*) of the film. The films enhanced the antioxidant and antimicrobial properties of the enclosed cheese samples during storage and the highest values were recorded for the samples packed within T<sub>2</sub> films. The cheese samples packaged within T<sub>2</sub> and T<sub>1</sub> films showed significantly lower values for lipid oxidation and microbial counts. This positive effect of the films (T<sub>2</sub> and T<sub>1</sub>) was also recorded on protein oxidation (total-carbonyl content) after day 30 and sensory quality after day 60. Our results indicate the successful use of silkworm pupae protein for the development of bioactive packaging for cheddar cheese.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"6 ","pages":"Article 100183"},"PeriodicalIF":4.6,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667025924000086/pdfft?md5=4d4c151ae03d4ae3f48cbafa7c9597b9&pid=1-s2.0-S2667025924000086-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Re-processing of pharmaceutical herb residues using isolated probiotics from plant sources and their beneficial effects on diarrhea 利用从植物中分离的益生菌再加工药草残留物及其对腹泻的有益作用
IF 4.6
Food Hydrocolloids for Health Pub Date : 2024-06-20 DOI: 10.1016/j.fhfh.2024.100181
Samima Yeasmin , Abu Naser Md Nayeem , Anjumanara khatun , ABM Ashraful , Muhsi Faiaz , Shumaia Parvin , Most. Afia Akhtar , Md Aziz Abdur Rahman , Md Abu Reza , Athanasios Alexiou , Marios Papadakis , Nermeen N. Welson , Mohamed H. Mahmoud , Gaber El-Saber Batiha , Ronok Zahan
{"title":"Re-processing of pharmaceutical herb residues using isolated probiotics from plant sources and their beneficial effects on diarrhea","authors":"Samima Yeasmin ,&nbsp;Abu Naser Md Nayeem ,&nbsp;Anjumanara khatun ,&nbsp;ABM Ashraful ,&nbsp;Muhsi Faiaz ,&nbsp;Shumaia Parvin ,&nbsp;Most. Afia Akhtar ,&nbsp;Md Aziz Abdur Rahman ,&nbsp;Md Abu Reza ,&nbsp;Athanasios Alexiou ,&nbsp;Marios Papadakis ,&nbsp;Nermeen N. Welson ,&nbsp;Mohamed H. Mahmoud ,&nbsp;Gaber El-Saber Batiha ,&nbsp;Ronok Zahan","doi":"10.1016/j.fhfh.2024.100181","DOIUrl":"https://doi.org/10.1016/j.fhfh.2024.100181","url":null,"abstract":"<div><p>This study aims to use hot aqueous extract of herbal residue (HRE) to enhance bacterial growth and possess anti-diarrheal effects. In this study, lactobacillus species <em>L. brevis</em> (SAM-1), <em>Lactobacillus plantarum</em> (SAM-2), and <em>Lactobacillus herbinensis</em> (SAM-3) were isolated from date palm sap (collected in winter season). Square Pharmaceuticals PLC, Bangladesh provided herbal residues ‘Adovas’ which is non-sedating herbal cough syrup with sixteen common herbs including Adhatoda vasica. In our observation, HRE increased the number of colonies in MRS media. In the anti-diarrheal study by castor oil and magnesium sulphate-induced diarrheal mouse model, SAM-1 and 2 with or without HRE showed almost similar results. After initial morphological characterization, tests such as resistance to low pH, bile salt and survival capability in gastric simulated fluid (GSF) were performed to confirm them as a probiotic candidate. All three isolates were gram-positive bacteria and could grow in a mesophilic range of temperatures. The isolates were catalase-negative and were able to coagulate milk after overnight incubation. As the isolates exhibited resistance to low pH and could tolerate bile salts, they may survive in the stomach and intestine, thus making them a promising probiotic candidate. The isolated probiotics and HRE inhibited diarrheal and restored the body's electrolytes. Interestingly, SAM-2 showed higher efficacy than the standard drug (Loperamide), while SAM-1 showed a similar effect and SAM-3, had less effect than Loperamide. The findings suggest that probiotics and herbal residue could contribute to diarrhoeal disease prevention, which might be an alternative to a synthetic standard drug (Loperamide).</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"6 ","pages":"Article 100181"},"PeriodicalIF":4.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667025924000062/pdfft?md5=74ade19406a0f4ff223016a68aac7412&pid=1-s2.0-S2667025924000062-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141595211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating next-generation edible packaging: Protein-based films and coatings for delivering active compounds 研究下一代食用包装:用于输送活性化合物的蛋白质薄膜和涂层
IF 4.6
Food Hydrocolloids for Health Pub Date : 2024-06-17 DOI: 10.1016/j.fhfh.2024.100182
Myat Noe Khin , Shabbir Ahammed , Md. Murtuza Kamal , Md Nazmus Saqib , Fei Liu , Fang Zhong
{"title":"Investigating next-generation edible packaging: Protein-based films and coatings for delivering active compounds","authors":"Myat Noe Khin ,&nbsp;Shabbir Ahammed ,&nbsp;Md. Murtuza Kamal ,&nbsp;Md Nazmus Saqib ,&nbsp;Fei Liu ,&nbsp;Fang Zhong","doi":"10.1016/j.fhfh.2024.100182","DOIUrl":"https://doi.org/10.1016/j.fhfh.2024.100182","url":null,"abstract":"<div><p>Edible film and coating are nutritious and beneficial for the host as those are consumed with food. Among various edible films and coatings, this review focused on protein-based films and coatings due to their potential application as a carrier for bioactive compounds in the food and biomedical industries. Bioactive compounds such as probiotics, prebiotics, and phenolic compounds have shown promise in maintaining intestinal health. They enhance immune response, lower inflammation in gastrointestinal illnesses, and help to prevent colon cancer. However, these bioactive compounds are often susceptible to environmental factors such as temperature, oxygen, pH etc. Consequently, encapsulation of these compounds becomes essential to protect them from potential damage and ensure the delivery of these compounds into the host body while retaining their intended functional properties. Current trends involve incorporating phenolic compounds into films or encapsulating probiotics and prebiotics as core materials using different wall materials. These encapsulated compounds can be intake with the food. Ongoing research endeavors are dedicated to improve the mechanical properties or functional properties of edible films and coatings separately. This review aims to overcome existing limitations of encapsulation of bioactive compounds into various types of protein film and enhance the functionality and health benefits and unlock the application of protein-based edible films and coating in the food industry.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"6 ","pages":"Article 100182"},"PeriodicalIF":4.6,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667025924000074/pdfft?md5=1483309d93a5632ea51e8cdeb317e6da&pid=1-s2.0-S2667025924000074-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141486373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances on antimicrobial peptide and polysaccharide hydrogels 抗菌肽和多糖水凝胶的最新进展
IF 4.6
Food Hydrocolloids for Health Pub Date : 2024-06-13 DOI: 10.1016/j.fhfh.2024.100180
Serena Lam , Amanda Clairoux , Chibuike C. Udenigwe
{"title":"Recent advances on antimicrobial peptide and polysaccharide hydrogels","authors":"Serena Lam ,&nbsp;Amanda Clairoux ,&nbsp;Chibuike C. Udenigwe","doi":"10.1016/j.fhfh.2024.100180","DOIUrl":"10.1016/j.fhfh.2024.100180","url":null,"abstract":"<div><p>The three-dimensional structure and network that compose naturally or synthetically derived polymers, such as hydrogels, allow for a wide variety in customization of the biomaterial characteristics, thus resulting in various applications. In medical care, hydrogels formed by intrinsic or exogenous antimicrobial components can act as effective vehicles for the administration of drugs and bioactive compounds, as alternatives to traditional wound dressings, and as antimicrobial coatings on implanted medical devices. In food safety, hydrogels with antimicrobial properties are desirable as food spoilage inhibitors. There has been a recent heightened focus on naturally derived hydrogels, due to their cost effectiveness and lack of concern for toxicity, which enhance their potential for a variety of food and biomedical applications. This concise review focuses on the recent advances of naturally derived peptide and polysaccharide antimicrobial hydrogels in the biomedical and food industries.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"6 ","pages":"Article 100180"},"PeriodicalIF":4.6,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667025924000050/pdfft?md5=87fff37bfdb165acb92932ccedfe2803&pid=1-s2.0-S2667025924000050-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141391836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信