Flávia Silva-Sousa, Bruna Oliveira, Ricardo Franco-Duarte, Carole Camarasa, Maria João Sousa
{"title":"Bridging the gap: linking Torulaspora delbrueckii genotypes to fermentation phenotypes and wine aroma.","authors":"Flávia Silva-Sousa, Bruna Oliveira, Ricardo Franco-Duarte, Carole Camarasa, Maria João Sousa","doi":"10.1093/femsyr/foae034","DOIUrl":"10.1093/femsyr/foae034","url":null,"abstract":"<p><p>Climate change and consumer preferences are driving innovation in winemaking, with a growing interest in non-Saccharomyces species. Among these, Torulaspora delbrueckii (Td) has gained recognition for its ability to reduce volatile acidity and enhance aromatic complexity in wine. However, knowledge regarding its phenotypic and genomic diversity impacting alcoholic fermentation remains limited. Aiming to elucidate the metabolic differences between Td and Saccharomyces cerevisiae (Sc) and the Td intraspecies diversity, we conducted a comprehensive metabolic characterization of 15 Td strains. This analysis delved beyond standard fermentation parameters (kinetics and major metabolites production) to explore non-conventional aromas and establish genotype-phenotype links. Our findings confirmed that most Td strains produce less acetic acid and more succinate and glycerol than Sc. The overall aromatic profiles of Td strains differed from Sc, exhibiting higher levels of monoterpenes and higher alcohols, while producing less acetate esters, fatty acids, their corresponding ethyl esters, and lactones. Moreover, we identified the absence of genes responsible for specific aroma profiles, such as decreased ethyl esters production, as well as the absence of cell wall genes, which might negatively affect Td performance when compared to Sc. This work highlights the significant diversity within Td and underscores potential links between its genotype and phenotype.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600337/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elizaveta Koroleva, Barbra Toplis, Malcolm Taylor, Corné van Deventer, Heidi C Steffen, Christiaan van den Heever, Nelesh P Govender, Sybren de Hoog, Alfred Botha
{"title":"Exploring polyamine metabolism of the yeast-like fungus, Emergomyces africanus.","authors":"Elizaveta Koroleva, Barbra Toplis, Malcolm Taylor, Corné van Deventer, Heidi C Steffen, Christiaan van den Heever, Nelesh P Govender, Sybren de Hoog, Alfred Botha","doi":"10.1093/femsyr/foae038","DOIUrl":"10.1093/femsyr/foae038","url":null,"abstract":"<p><p>Emergomyces africanus is a thermally dimorphic pathogen causing severe morbidity and mortality in immunocompromized patients. Its transition to a pathogenic yeast-like phase in the human host is a notable virulence mechanism. Recent studies suggest polyamines as key players in dimorphic switching, yet their precise functions remain enigmatic. This work aimed to explore polyamine metabolism of two clinical strains of E. africanus (CBS 136260 and CBS 140360) in mycelial and yeast-like phases. In this first report of the polyamine profile of E. africanus, we reveal, using mass spectrometry, spermidine, and spermine as the major polyamines in both phases. The secretion of these amines was significantly higher in the pathogenic yeast-like phase than in the mycelial phase, warranting further investigation into the implications thereof on virulence. Additionally, we detected the activity of several polyamine biosynthesis enzymes, including arginine decarboxylase, agmatinase, arginase, and ornithine decarboxylase, with significant differences in enzyme expression between morphological phases and strains. Finally, we provide initial evidence for the requirement for spermine, spermidine, and putrescine during the thermally induced dimorphic switch of E. africanus, with strain-specific differences in the production of these amines. Overall, our study presents novel insight into polyamine metabolism and its role in dimorphism of E. africanus.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Larissa M M Mattos, Hyan M Hottum, Daniele C Pires, Bruna B Segat, Adolfo Horn, Christiane Fernandes, Marcos D Pereira
{"title":"Exploring the antioxidant activity of Fe(III), Mn(III)Mn(II), and Cu(II) compounds in Saccharomyces cerevisiae and Galleria mellonella models of study","authors":"Larissa M M Mattos, Hyan M Hottum, Daniele C Pires, Bruna B Segat, Adolfo Horn, Christiane Fernandes, Marcos D Pereira","doi":"10.1093/femsyr/foad052","DOIUrl":"https://doi.org/10.1093/femsyr/foad052","url":null,"abstract":"Reactive oxygen species (ROS) are closely related to oxidative stress, aging, and the onset of human diseases. To mitigate ROS-induced damages, extensive research has focused on examining the antioxidative attributes of various synthetic/natural substances. Coordination compounds serving as synthetic antioxidants have emerged as a promising approach to attenuate ROS toxicity. Herein, we investigated the antioxidant potential of a series of Fe(III) (1), Mn(III)Mn(II) (2) and Cu(II) (3) coordination compounds synthesized with the ligand N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)[(3-chloro)(2-hydroxy)]-propylamine in Saccharomyces cerevisiae exposed to oxidative stress. We also assessed the antioxidant potential of these complexes in the alternative model of study, Galleria mellonella. DPPH analysis indicated that these complexes presented moderate antioxidant activity. However, treating Saccharomyces cerevisiae with 1, 2 and 3 increased the tolerance against oxidative stress and extended yeast lifespan. The treatment of yeast cells with these complexes decreased lipid peroxidation and catalase activity in stressed cells, whilst no change in SOD activity was observed. Moreover, these complexes induced the Hsp104 expression. In G. mellonella, complex administration extended larval survival under H2O2 stress and did not affect the insect's life cycle. Our results suggest that the antioxidant potential exhibited by these complexes could be further explored to mitigate various oxidative stress-related disorders.","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"10 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138824596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Irene De Guidi, Céline Serre, Jessica Noble, Anne Ortiz-Julien, Bruno Blondin, Jean-Luc Legras
{"title":"QTL mapping reveals novel genes and mechanisms underlying variations in H2S production during alcoholic fermentation in Saccharomyces cerevisiae","authors":"Irene De Guidi, Céline Serre, Jessica Noble, Anne Ortiz-Julien, Bruno Blondin, Jean-Luc Legras","doi":"10.1093/femsyr/foad050","DOIUrl":"https://doi.org/10.1093/femsyr/foad050","url":null,"abstract":"Saccharomyces cerevisiae requirement for reduced sulfur to synthesise methionine and cysteine during alcoholic fermentation, is mainly fulfilled through the sulfur assimilation pathway. S. cerevisiae reduces sulfate into sulfur dioxide (SO2) and sulfide (H2S), whose overproduction is a major issue in winemaking, due to its negative impact on wine aroma. The amount of H2S produced is highly strain-specific and also depends on SO2 concentration, often added to grape must. Applying a Bulk Segregant Analysis to a 96 strain-progeny derived from two strains with different abilities to produce H2S, and comparing allelic frequencies along the genome of pools of segregants producing contrasting H2S quantities, we identified two causative regions involved in H2S production in the presence of SO2. A functional genetic analysis allowed the identification of variants in four genes able to impact H2S formation, viz; ZWF1, ZRT2, SNR2 and YLR125W, and involved in functions and pathways not associated with sulfur metabolism until now. These data point out that, in wine fermentation conditions, redox status and zinc homeostasis are linked to H2S formation while providing new insights into the regulation of H2S production, and a new vision of the interplay between the sulfur assimilation pathway and cell metabolism.","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"1 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138824212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"My Journey with Yeast.","authors":"Charles Abbas","doi":"10.1093/femsyr/foad035","DOIUrl":"https://doi.org/10.1093/femsyr/foad035","url":null,"abstract":"<p><p>Advances in yeast biotechnology rely on the application of knowledge gained using modern biotechnological tools to harness the metabolic repertoire of various yeast genera that have been studied in detail. In my work, I have attempted to combine knowledge gained from academic research with industrial knowhow in practical cost-effective ways to scale up commercial yeast fermentations from one hundred thousand to greater than one million liters. Among the processes I scaled up and/or optimized to production scale include biofuels, chemicals, food and feed additives. During a long industrial career that spanned over three decades, I leveraged what was often very challenging work with many academic, government, and industrial scientists engaging them in collaborative research to ensure a successful outcome. Many of these collaborators responded in kind and are part of this narrative. In many ways, my journey was also theirs. However, I acquired the scientific foundation or starting point much earlier during my undergraduate studies learning from great professors that helped me understand the complexity of science while convincing me of the value of pursuing research as a career.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9677284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Travels with Metschnikowia","authors":"M. Lachance","doi":"10.1093/femsyr/foad025","DOIUrl":"https://doi.org/10.1093/femsyr/foad025","url":null,"abstract":"Abstract For over four decades, I have explored hotspots of biodiversity in search of yeasts that could increase our understanding of the meaning of species as the concept applies to yeasts. This led to the discovery, description, and characterization of many Metschnikowia and other species. What published species descriptions do not report is the context of their discoveries, the people and the places involved. This is an abridged account of some of the paths I followed in making these yeast discoveries and some of the wonderful people that have made them possible. Selected memories about education, serendipity, boots, dress trousers, pantyhose, t-shirts, hugs, magic, friendships, symbioses, beetles, morning glories, missing nuclei, love, and loss.","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"23 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46626581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metabolic engineering of Saccharomyces cerevisiae for glycerol utilization.","authors":"Ziqian Yu, Zhao Chang, Yinhua Lu, Han Xiao","doi":"10.1093/femsyr/foad014","DOIUrl":"https://doi.org/10.1093/femsyr/foad014","url":null,"abstract":"<p><p>Due to its wide availability, glycerol is considered as a promising alternative feedstock for microbial fermentation. As a model eukaryote, Saccharomyces cerevisiae is commonly adopted for bioproduction of various bulk and value-added chemicals, but it does not efficiently utilize glycerol. In this review, the metabolic pathway of glycerol and its regulation in S. cerevisiae are first introduced. Then, strategies, including metabolic engineering of the endogenous pathway, introduction of exogenous pathways, adaptive evolution, and reverse metabolic engineering, are summarized for improving the glycerol utilization in S. cerevisiae. Finally, methods for further improving glycerol utilization by S. cerevisiae are proposed. This review provides insights for designing engineered S. cerevisiae for efficient utilization of glycerol.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"23 ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9173034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Industry and academia-a perfect match.","authors":"Hennie J J van Vuuren, Terrance G Cooper","doi":"10.1093/femsyr/foac061","DOIUrl":"https://doi.org/10.1093/femsyr/foac061","url":null,"abstract":"<p><p>My career developed very differently from those of most academic researchers. After school, I worked for 6 years in industries that employed yeast to manufacture ethanol and beer. At university, I was trained as a microbiologist with very little training in molecular biology. I retrained in 1987 in molecular yeast genetics and focused on genetic engineering of industrial yeasts to minimize the production of spoilage compounds in wine and ethyl carbamate, a carcinogen, in wine. The malolactic yeast ML01 and the urea-degrading yeast were the first genetically enhanced yeasts that obtained US FDA approval for commercial applications. Apart from applied research, I was fascinated by classic molecular yeast genetic studies using sophisticated techniques such as transcriptomics, proteomics, and metabolomics. Doing research at the University of British Columbia was stimulating and exciting, we established a core microarray and metabolomics facility that was used by many scientists at UBC and hospitals in Vancouver. I also established a state-of-the-art Wine Library that was used to study aging of wines produced in British Columbia. Finally, I have been fortunate to know and collaborate with leading yeast scientists who motivated me.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"23 ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9089750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Letizia Maestroni, Pietro Butti, Vittorio Giorgio Senatore, Paola Branduardi
{"title":"pCEC-red: a new vector for easier and faster CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.","authors":"Letizia Maestroni, Pietro Butti, Vittorio Giorgio Senatore, Paola Branduardi","doi":"10.1093/femsyr/foad002","DOIUrl":"10.1093/femsyr/foad002","url":null,"abstract":"<p><p>CRISPR-Cas9 technology is widely used for precise and specific editing of Saccharomyces cerevisiae genome to obtain marker-free engineered hosts. Targeted double-strand breaks are controlled by a guide RNA (gRNA), a chimeric RNA containing a structural segment for Cas9 binding and a 20-mer guide sequence that hybridises to the genomic DNA target. Introducing the 20-mer guide sequence into gRNA expression vectors often requires complex, time-consuming, and/or expensive cloning procedures. We present a new plasmid for CRISPR-Cas9 genome editing in S. cerevisiae, pCEC-red. This tool allows to (i) transform yeast with both Cas9 and gRNA expression cassettes in a single plasmid and (ii) insert the 20-mer sequence in the plasmid with high efficiency, thanks to Golden Gate Assembly and (iii) a red chromoprotein-based screening to speed up the selection of correct plasmids. We tested genome-editing efficiency of pCEC-red by targeting the ADE2 gene. We chose three different 20-mer targets and designed two types of repair fragments to test pCEC-red for precision editing and for large DNA region replacement procedures. We obtained high efficiencies (∼90%) for both engineering procedures, suggesting that the pCEC system can be used for fast and reliable marker-free genome editing.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"23 ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/35/69/foad002.PMC9906608.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9587562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Beatrice Bernardi, Florian Michling, Judith Muno-Bender, Katrin Matti, Jürgen Wendland
{"title":"The genome sequence of the Champagne Epernay Geisenheim wine yeast reveals its hybrid nature.","authors":"Beatrice Bernardi, Florian Michling, Judith Muno-Bender, Katrin Matti, Jürgen Wendland","doi":"10.1093/femsyr/foad033","DOIUrl":"https://doi.org/10.1093/femsyr/foad033","url":null,"abstract":"<p><p>Lager yeasts are hybrids between Saccharomyces cerevisiae and S. eubayanus. Wine yeast biodiversity, however, has only recently been discovered to include besides pure S. cerevisiae strains also hybrids between different Saccharomyces yeasts as well as introgressions from non-Saccharomyces species. Here, we analysed the genome of the Champagne Epernay Geisenheim (CEG) wine yeast. This yeast is an allotetraploid (4n - 1) hybrid of S. cerevisiae harbouring a substantially reduced S. kudriavzevii genome contributing only 1/3 of a full genome equivalent. We identified a novel oligopeptide transporter gene, FOT4, in CEG located on chromosome XVI. FOT genes were originally derived from Torulaspora microellipsoides and FOT4 arose by non-allelic recombination between adjacent FOT1 and FOT2 genes. Fermentations of CEG in Riesling and Müller-Thurgau musts were compared with the S. cerevisiae Geisenheim wine yeast GHM, which does not carry FOT genes. At low temperature (10°C), CEG completed fermentations faster and produced increased levels of higher alcohols (e.g. isoamyl alcohol). At higher temperature (18°C), CEG produced higher amounts of the pineapple-like alkyl esters i-butyric and propionic acid ethyl esters compared to GHM. The hybrid nature of CEG thus provides advantages in grape must fermentations over S. cerevisiae wine yeasts, especially with regard to aroma production.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"23 ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10117892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}