FEMS yeast research最新文献

筛选
英文 中文
Travels with Metschnikowia 与Metschnikowia一起旅行
IF 3.2 4区 生物学
FEMS yeast research Pub Date : 2023-04-18 DOI: 10.1093/femsyr/foad025
M. Lachance
{"title":"Travels with Metschnikowia","authors":"M. Lachance","doi":"10.1093/femsyr/foad025","DOIUrl":"https://doi.org/10.1093/femsyr/foad025","url":null,"abstract":"Abstract For over four decades, I have explored hotspots of biodiversity in search of yeasts that could increase our understanding of the meaning of species as the concept applies to yeasts. This led to the discovery, description, and characterization of many Metschnikowia and other species. What published species descriptions do not report is the context of their discoveries, the people and the places involved. This is an abridged account of some of the paths I followed in making these yeast discoveries and some of the wonderful people that have made them possible. Selected memories about education, serendipity, boots, dress trousers, pantyhose, t-shirts, hugs, magic, friendships, symbioses, beetles, morning glories, missing nuclei, love, and loss.","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46626581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic engineering of Saccharomyces cerevisiae for glycerol utilization. 甘油利用的酿酒酵母代谢工程。
IF 3.2 4区 生物学
FEMS yeast research Pub Date : 2023-01-04 DOI: 10.1093/femsyr/foad014
Ziqian Yu, Zhao Chang, Yinhua Lu, Han Xiao
{"title":"Metabolic engineering of Saccharomyces cerevisiae for glycerol utilization.","authors":"Ziqian Yu,&nbsp;Zhao Chang,&nbsp;Yinhua Lu,&nbsp;Han Xiao","doi":"10.1093/femsyr/foad014","DOIUrl":"https://doi.org/10.1093/femsyr/foad014","url":null,"abstract":"<p><p>Due to its wide availability, glycerol is considered as a promising alternative feedstock for microbial fermentation. As a model eukaryote, Saccharomyces cerevisiae is commonly adopted for bioproduction of various bulk and value-added chemicals, but it does not efficiently utilize glycerol. In this review, the metabolic pathway of glycerol and its regulation in S. cerevisiae are first introduced. Then, strategies, including metabolic engineering of the endogenous pathway, introduction of exogenous pathways, adaptive evolution, and reverse metabolic engineering, are summarized for improving the glycerol utilization in S. cerevisiae. Finally, methods for further improving glycerol utilization by S. cerevisiae are proposed. This review provides insights for designing engineered S. cerevisiae for efficient utilization of glycerol.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9173034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Industry and academia-a perfect match. 工业界和学术界是完美的一对。
IF 3.2 4区 生物学
FEMS yeast research Pub Date : 2023-01-04 DOI: 10.1093/femsyr/foac061
Hennie J J van Vuuren, Terrance G Cooper
{"title":"Industry and academia-a perfect match.","authors":"Hennie J J van Vuuren,&nbsp;Terrance G Cooper","doi":"10.1093/femsyr/foac061","DOIUrl":"https://doi.org/10.1093/femsyr/foac061","url":null,"abstract":"<p><p>My career developed very differently from those of most academic researchers. After school, I worked for 6 years in industries that employed yeast to manufacture ethanol and beer. At university, I was trained as a microbiologist with very little training in molecular biology. I retrained in 1987 in molecular yeast genetics and focused on genetic engineering of industrial yeasts to minimize the production of spoilage compounds in wine and ethyl carbamate, a carcinogen, in wine. The malolactic yeast ML01 and the urea-degrading yeast were the first genetically enhanced yeasts that obtained US FDA approval for commercial applications. Apart from applied research, I was fascinated by classic molecular yeast genetic studies using sophisticated techniques such as transcriptomics, proteomics, and metabolomics. Doing research at the University of British Columbia was stimulating and exciting, we established a core microarray and metabolomics facility that was used by many scientists at UBC and hospitals in Vancouver. I also established a state-of-the-art Wine Library that was used to study aging of wines produced in British Columbia. Finally, I have been fortunate to know and collaborate with leading yeast scientists who motivated me.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9089750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
pCEC-red: a new vector for easier and faster CRISPR-Cas9 genome editing in Saccharomyces cerevisiae. pCEC-red:在酿酒酵母中更容易和更快地进行CRISPR-Cas9基因组编辑的新载体
IF 3.2 4区 生物学
FEMS yeast research Pub Date : 2023-01-04 DOI: 10.1093/femsyr/foad002
Letizia Maestroni, Pietro Butti, Vittorio Giorgio Senatore, Paola Branduardi
{"title":"pCEC-red: a new vector for easier and faster CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.","authors":"Letizia Maestroni, Pietro Butti, Vittorio Giorgio Senatore, Paola Branduardi","doi":"10.1093/femsyr/foad002","DOIUrl":"10.1093/femsyr/foad002","url":null,"abstract":"<p><p>CRISPR-Cas9 technology is widely used for precise and specific editing of Saccharomyces cerevisiae genome to obtain marker-free engineered hosts. Targeted double-strand breaks are controlled by a guide RNA (gRNA), a chimeric RNA containing a structural segment for Cas9 binding and a 20-mer guide sequence that hybridises to the genomic DNA target. Introducing the 20-mer guide sequence into gRNA expression vectors often requires complex, time-consuming, and/or expensive cloning procedures. We present a new plasmid for CRISPR-Cas9 genome editing in S. cerevisiae, pCEC-red. This tool allows to (i) transform yeast with both Cas9 and gRNA expression cassettes in a single plasmid and (ii) insert the 20-mer sequence in the plasmid with high efficiency, thanks to Golden Gate Assembly and (iii) a red chromoprotein-based screening to speed up the selection of correct plasmids. We tested genome-editing efficiency of pCEC-red by targeting the ADE2 gene. We chose three different 20-mer targets and designed two types of repair fragments to test pCEC-red for precision editing and for large DNA region replacement procedures. We obtained high efficiencies (∼90%) for both engineering procedures, suggesting that the pCEC system can be used for fast and reliable marker-free genome editing.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/35/69/foad002.PMC9906608.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9587562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Split-marker-mediated genome editing improves homologous recombination frequency in the CTG clade yeast Candida intermedia. 分裂标记介导的基因组编辑提高了CTG分支酵母假丝酵母中间介质的同源重组频率。
IF 3.2 4区 生物学
FEMS yeast research Pub Date : 2023-01-04 DOI: 10.1093/femsyr/foad016
Kameshwara V R Peri, Fábio Faria-Oliveira, Adam Larsson, Alexander Plovie, Nicolas Papon, Cecilia Geijer
{"title":"Split-marker-mediated genome editing improves homologous recombination frequency in the CTG clade yeast Candida intermedia.","authors":"Kameshwara V R Peri,&nbsp;Fábio Faria-Oliveira,&nbsp;Adam Larsson,&nbsp;Alexander Plovie,&nbsp;Nicolas Papon,&nbsp;Cecilia Geijer","doi":"10.1093/femsyr/foad016","DOIUrl":"https://doi.org/10.1093/femsyr/foad016","url":null,"abstract":"<p><p>Genome-editing toolboxes are essential for the exploration and exploitation of nonconventional yeast species as cell factories, as they facilitate both genome studies and metabolic engineering. The nonconventional yeast Candida intermedia is a biotechnologically interesting species due to its capacity to convert a wide range of carbon sources, including xylose and lactose found in forestry and dairy industry waste and side-streams, into added-value products. However, possibilities of genetic manipulation have so far been limited due to lack of molecular tools for this species. We describe here the development of a genome editing method for C. intermedia, based on electroporation and gene deletion cassettes containing the Candida albicans NAT1 dominant selection marker flanked by 1000 base pair sequences homologous to the target loci. Linear deletion cassettes targeting the ADE2 gene originally resulted in <1% targeting efficiencies, suggesting that C. intermedia mainly uses nonhomologous end joining for integration of foreign DNA fragments. By developing a split-marker based deletion technique for C. intermedia, we successfully improved the homologous recombination rates, achieving targeting efficiencies up to 70%. For marker-less deletions, we also employed the split-marker cassette in combination with a recombinase system, which enabled the construction of double deletion mutants via marker recycling. Overall, the split-marker technique proved to be a quick and reliable method for generating gene deletions in C. intermedia, which opens the possibility to uncover and enhance its cell factory potential.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035504/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9653578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Insights into the transcriptional regulation of poorly characterized alcohol acetyltransferase-encoding genes (HgAATs) shed light into the production of acetate esters in the wine yeast Hanseniaspora guilliermondii. 对未明确表征的酒精乙酰转移酶编码基因(HgAATs)转录调控的深入了解,为葡萄酒酵母Hanseniaspora guilliermondii醋酸酯的生产提供了线索。
IF 3.2 4区 生物学
FEMS yeast research Pub Date : 2023-01-04 DOI: 10.1093/femsyr/foad021
Isabel Seixas, Diogo Santos, Isabel Vasconcelos, Nuno P Mira, Ana Mendes-Ferreira
{"title":"Insights into the transcriptional regulation of poorly characterized alcohol acetyltransferase-encoding genes (HgAATs) shed light into the production of acetate esters in the wine yeast Hanseniaspora guilliermondii.","authors":"Isabel Seixas,&nbsp;Diogo Santos,&nbsp;Isabel Vasconcelos,&nbsp;Nuno P Mira,&nbsp;Ana Mendes-Ferreira","doi":"10.1093/femsyr/foad021","DOIUrl":"https://doi.org/10.1093/femsyr/foad021","url":null,"abstract":"<p><p>Hanseniaspora guilliermondii is a well-recognized producer of acetate esters associated with fruity and floral aromas. The molecular mechanisms underneath this production or the environmental factors modulating it remain unknown. Herein, we found that, unlike Saccharomyces cerevisiae, H. guilliermondii over-produces acetate esters and higher alcohols at low carbon-to-assimilable nitrogen (C:N) ratios, with the highest titers being obtained in the amino acid-enriched medium YPD. The evidences gathered support a model in which the strict preference of H. guilliermondii for amino acids as nitrogen sources results in a channeling of keto-acids obtained after transamination to higher alcohols and acetate esters. This higher production was accompanied by higher expression of the four HgAATs, genes, recently proposed to encode alcohol acetyl transferases. In silico analyses of these HgAat's reveal that they harbor conserved AATs motifs, albeit radical substitutions were identified that might result in different kinetic properties. Close homologues of HgAat2, HgAat3, and HgAat4 were only found in members of Hanseniaspora genus and phylogenetic reconstruction shows that these constitute a distinct family of Aat's. These results advance the exploration of H. guilliermondii as a bio-flavoring agent providing important insights to guide future strategies for strain engineering and media manipulation that can enhance production of aromatic volatiles.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070066/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9292642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of vitamin B12 dependency in Saccharomyces cerevisiae. 酿酒酵母对维生素B12依赖性的研究进展。
IF 3.2 4区 生物学
FEMS yeast research Pub Date : 2023-01-04 DOI: 10.1093/femsyr/foad020
Sandra Lehner, Eckhard Boles
{"title":"Development of vitamin B12 dependency in Saccharomyces cerevisiae.","authors":"Sandra Lehner,&nbsp;Eckhard Boles","doi":"10.1093/femsyr/foad020","DOIUrl":"https://doi.org/10.1093/femsyr/foad020","url":null,"abstract":"<p><p>For decades, the industrial vitamin B12 (cobalamin) production has been based on bacterial producer strains. Due to limited methods for strain optimization and difficult strain handling, the desire for new vitamin B12-producing hosts has risen. As a vitamin B12-independent organism with a big toolbox for genomic engineering and easy-to-handle cultivation conditions, Saccharomyces cerevisiae has high potential for heterologous vitamin B12 production. However, the B12 synthesis pathway is long and complex. To be able to easily engineer and evolve B12-producing recombinant yeast cells, we have developed an S. cerevisiae strain whose growth is dependent on vitamin B12. For this, the B12-independent methionine synthase Met6 of yeast was replaced by a B12-dependent methionine synthase MetH from Escherichia coli. Adaptive laboratory evolution, RT-qPCR, and overexpression experiments show that additional high-level expression of a bacterial flavodoxin/ferredoxin-NADP+ reductase (Fpr-FldA) system is essential for in vivo reactivation of MetH activity and growth. Growth of MetH-containing yeast cells on methionine-free media is only possible with the addition of adenosylcobalamin or methylcobalamin. A heterologous vitamin B12 transport system turned out to be not necessary for the uptake of cobalamins. This strain should be a powerful chassis to engineer B12-producing yeast cells.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9300062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The genome sequence of the Champagne Epernay Geisenheim wine yeast reveals its hybrid nature. 香槟Epernay Geisenheim葡萄酒酵母的基因组序列揭示了其杂交性质。
IF 3.2 4区 生物学
FEMS yeast research Pub Date : 2023-01-04 DOI: 10.1093/femsyr/foad033
Beatrice Bernardi, Florian Michling, Judith Muno-Bender, Katrin Matti, Jürgen Wendland
{"title":"The genome sequence of the Champagne Epernay Geisenheim wine yeast reveals its hybrid nature.","authors":"Beatrice Bernardi,&nbsp;Florian Michling,&nbsp;Judith Muno-Bender,&nbsp;Katrin Matti,&nbsp;Jürgen Wendland","doi":"10.1093/femsyr/foad033","DOIUrl":"https://doi.org/10.1093/femsyr/foad033","url":null,"abstract":"<p><p>Lager yeasts are hybrids between Saccharomyces cerevisiae and S. eubayanus. Wine yeast biodiversity, however, has only recently been discovered to include besides pure S. cerevisiae strains also hybrids between different Saccharomyces yeasts as well as introgressions from non-Saccharomyces species. Here, we analysed the genome of the Champagne Epernay Geisenheim (CEG) wine yeast. This yeast is an allotetraploid (4n - 1) hybrid of S. cerevisiae harbouring a substantially reduced S. kudriavzevii genome contributing only 1/3 of a full genome equivalent. We identified a novel oligopeptide transporter gene, FOT4, in CEG located on chromosome XVI. FOT genes were originally derived from Torulaspora microellipsoides and FOT4 arose by non-allelic recombination between adjacent FOT1 and FOT2 genes. Fermentations of CEG in Riesling and Müller-Thurgau musts were compared with the S. cerevisiae Geisenheim wine yeast GHM, which does not carry FOT genes. At low temperature (10°C), CEG completed fermentations faster and produced increased levels of higher alcohols (e.g. isoamyl alcohol). At higher temperature (18°C), CEG produced higher amounts of the pineapple-like alkyl esters i-butyric and propionic acid ethyl esters compared to GHM. The hybrid nature of CEG thus provides advantages in grape must fermentations over S. cerevisiae wine yeasts, especially with regard to aroma production.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10117892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Retraction of: Transcription factor Liv4 is required for growth and pathogenesis of Cryptococcus neoformans. 逆转录:转录因子Liv4是新生隐球菌生长和发病机制所必需的。
IF 3.2 4区 生物学
FEMS yeast research Pub Date : 2023-01-04 DOI: 10.1093/femsyr/foad042
{"title":"Retraction of: Transcription factor Liv4 is required for growth and pathogenesis of Cryptococcus neoformans.","authors":"","doi":"10.1093/femsyr/foad042","DOIUrl":"10.1093/femsyr/foad042","url":null,"abstract":"","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582319/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41233751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How to think about and do successful research What you probable did not learn when you first entered the laboratory. 如何思考和进行成功的研究 你刚进实验室时可能没有学到的东西。
IF 2.4 4区 生物学
FEMS yeast research Pub Date : 2023-01-04 DOI: 10.1093/femsyr/foac065
Terrance G Cooper
{"title":"How to think about and do successful research What you probable did not learn when you first entered the laboratory.","authors":"Terrance G Cooper","doi":"10.1093/femsyr/foac065","DOIUrl":"10.1093/femsyr/foac065","url":null,"abstract":"<p><p>There is a logic to doing successful research, but graduate students and indeed postdoctoral fellows and young independent investigators often learn it apprentice style, by experience. The purpose of this essay is to provide the product of that experience and advice that I have found useful to young researchers as they begin their training and careers.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9990979/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9089473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信