Xiaohuan Zhang, Jeroen G Nijland, Arnold J M Driessen
{"title":"麦芽糖积累诱导酿酒酵母细胞死亡","authors":"Xiaohuan Zhang, Jeroen G Nijland, Arnold J M Driessen","doi":"10.1093/femsyr/foae012","DOIUrl":null,"url":null,"abstract":"Pretreatment of lignocellulose yields a complex sugar mixture that potentially can be converted into bioethanol and other chemicals by engineered yeast. One approach to overcome competition between sugars for uptake and metabolism is the use of a consortium of specialist strains capable of efficient conversion of single sugars. Here we show that maltose inhibits cell growth of a xylose-fermenting specialist strain IMX730.1 that is unable to utilize glucose because of the deletion of all hexokinase genes. The growth inhibition cannot be attributed to a competition between maltose and xylose for uptake. The inhibition is enhanced in a strain lacking maltase enzymes (dMalX2) and completely eliminated when all maltose transporters are deleted. High-level accumulation of maltose in the dMalX2 strain is accompanied by a hypotonic-like transcriptional response, while cells are rescued from maltose-induced cell death by the inclusion of an extracellular osmolyte such as sorbitol. These data suggest that maltose-induced cell death is due to high levels of maltose uptake causing hypotonic-like stress conditions and can be prevented through engineering of the maltose transporters. Transporter engineering should be included in the development of stable microbial consortia for the efficient conversion of lignocellulosic feedstocks.","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"27 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maltose accumulation induced cell death in Saccharomyces cerevisiae\",\"authors\":\"Xiaohuan Zhang, Jeroen G Nijland, Arnold J M Driessen\",\"doi\":\"10.1093/femsyr/foae012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pretreatment of lignocellulose yields a complex sugar mixture that potentially can be converted into bioethanol and other chemicals by engineered yeast. One approach to overcome competition between sugars for uptake and metabolism is the use of a consortium of specialist strains capable of efficient conversion of single sugars. Here we show that maltose inhibits cell growth of a xylose-fermenting specialist strain IMX730.1 that is unable to utilize glucose because of the deletion of all hexokinase genes. The growth inhibition cannot be attributed to a competition between maltose and xylose for uptake. The inhibition is enhanced in a strain lacking maltase enzymes (dMalX2) and completely eliminated when all maltose transporters are deleted. High-level accumulation of maltose in the dMalX2 strain is accompanied by a hypotonic-like transcriptional response, while cells are rescued from maltose-induced cell death by the inclusion of an extracellular osmolyte such as sorbitol. These data suggest that maltose-induced cell death is due to high levels of maltose uptake causing hypotonic-like stress conditions and can be prevented through engineering of the maltose transporters. Transporter engineering should be included in the development of stable microbial consortia for the efficient conversion of lignocellulosic feedstocks.\",\"PeriodicalId\":12290,\"journal\":{\"name\":\"FEMS yeast research\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS yeast research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsyr/foae012\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foae012","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Maltose accumulation induced cell death in Saccharomyces cerevisiae
Pretreatment of lignocellulose yields a complex sugar mixture that potentially can be converted into bioethanol and other chemicals by engineered yeast. One approach to overcome competition between sugars for uptake and metabolism is the use of a consortium of specialist strains capable of efficient conversion of single sugars. Here we show that maltose inhibits cell growth of a xylose-fermenting specialist strain IMX730.1 that is unable to utilize glucose because of the deletion of all hexokinase genes. The growth inhibition cannot be attributed to a competition between maltose and xylose for uptake. The inhibition is enhanced in a strain lacking maltase enzymes (dMalX2) and completely eliminated when all maltose transporters are deleted. High-level accumulation of maltose in the dMalX2 strain is accompanied by a hypotonic-like transcriptional response, while cells are rescued from maltose-induced cell death by the inclusion of an extracellular osmolyte such as sorbitol. These data suggest that maltose-induced cell death is due to high levels of maltose uptake causing hypotonic-like stress conditions and can be prevented through engineering of the maltose transporters. Transporter engineering should be included in the development of stable microbial consortia for the efficient conversion of lignocellulosic feedstocks.
期刊介绍:
FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.