Karen Peynshaert, Joke Devoldere, Stefaan De Smedt, Katrien Remaut
{"title":"Every nano-step counts: a critical reflection on do's and don'ts in researching nanomedicines for retinal gene therapy.","authors":"Karen Peynshaert, Joke Devoldere, Stefaan De Smedt, Katrien Remaut","doi":"10.1080/17425247.2023.2167979","DOIUrl":"https://doi.org/10.1080/17425247.2023.2167979","url":null,"abstract":"<p><strong>Introduction: </strong>Retinal disease affects millions of people worldwide, generating a massive social and economic burden. Current clinical trials for retinal diseases are dominated by gene augmentation therapies delivered with recombinant viruses as key players. As an alternative, nanoparticles hold great promise for the delivery of nucleic acid therapeutics as well. Nevertheless, despite numerous attempts, 'nano' is in practice not as successful as aspired and major breakthroughs in retinal gene therapy applying nanomaterials are yet to be seen.</p><p><strong>Areas covered: </strong>In this review, we summarize the advantages of nanomaterials and give an overview of nanoparticles designed for retinal nucleic acid delivery up to now. We furthermore critically reflect on the predominant issues that currently limit nano to progress to the clinic, where faulty study design and the absence of representative models play key roles.</p><p><strong>Expert opinion: </strong>Since the current approach of <i>in vitro</i> - <i>in vivo</i> experimentation is highly inefficient and creates misinformation, we advocate for a more prominent role for <i>ex vivo</i> testing early on in nanoparticle research. In addition, we elaborate on several concepts, including systematic studies and open science, which could aid in pushing the field of nanomedicine beyond the preclinical stage.</p>","PeriodicalId":12229,"journal":{"name":"Expert Opinion on Drug Delivery","volume":"20 2","pages":"259-271"},"PeriodicalIF":6.6,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10780829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Co-delivery of an HIV prophylactic and contraceptive using PGSU as a long-acting multipurpose prevention technology.","authors":"Jarrod Cohen, Dennis Shull, Stephanie Reed","doi":"10.1080/17425247.2023.2168642","DOIUrl":"https://doi.org/10.1080/17425247.2023.2168642","url":null,"abstract":"<p><strong>Objectives: </strong>Poly(glycerol sebacate) urethane (PGSU) elastomers formulated with 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), levonorgestrel (LNG), or a combination thereof can function as multipurpose prevention technology implants for prophylaxis against HIV and unintended pregnancies. For these public health challenges, long-acting drug delivery technologies may improve patient experience and adherence. Traditional polymers encounter challenges delivering multiple drugs with dissimilar physiochemical properties. PGSU offers an alternative option that successfully delivers hydrophilic EFdA alongside hydrophobic LNG.</p><p><strong>Methods: </strong>This article presents the formulation, design, and characterization of PGSU implants, highlighting the impact of API loading, dimensions, and individual- versus combination-loading on release rates.</p><p><strong>Results: </strong>Co-delivery of hydrophilic EFdA alongside hydrophobic LNG acted as a porogen to accelerate LNG release. Increasing the surface area of LNG-only implants increased LNG release. All EFdA-LNG, EFdA-only, and LNG-only formulated implants demonstrated low burst release and linear release kinetics over 245 or 122 days studied to date.</p><p><strong>Conclusion: </strong>PGSU co-delivers two APIs for HIV prevention and contraception at therapeutically relevant concentrations <i>in vitro</i> from a single bioresorbable, elastomeric implant. A new long-acting polymer technology, PGSU demonstrates linear-release kinetics, dual delivery of APIs with disparate physiochemical properties, and biocompatibility through long-term subcutaneous implantation. PGSU can potentially meet the demands of complex MPT or fixed-dose combination products, where better solutions can serve and empower patients.</p>","PeriodicalId":12229,"journal":{"name":"Expert Opinion on Drug Delivery","volume":"20 2","pages":"285-299"},"PeriodicalIF":6.6,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9347094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clayton H Rische, Ariel N Thames, Rebecca A Krier-Burris, Jeremy A O'Sullivan, Bruce S Bochner, Evan A Scott
{"title":"Drug delivery targets and strategies to address mast cell diseases.","authors":"Clayton H Rische, Ariel N Thames, Rebecca A Krier-Burris, Jeremy A O'Sullivan, Bruce S Bochner, Evan A Scott","doi":"10.1080/17425247.2023.2166926","DOIUrl":"10.1080/17425247.2023.2166926","url":null,"abstract":"<p><strong>Introduction: </strong>Current and developing mast cell therapeutics are reliant on small molecule drugs and biologics, but few are truly selective for mast cells. Most have cellular and disease-specific limitations that require innovation to overcome longstanding challenges to selectively targeting and modulating mast cell behavior. This review is designed to serve as a frame of reference for new approaches that utilize nanotechnology or combine different drugs to increase mast cell selectivity and therapeutic efficacy.</p><p><strong>Areas covered: </strong>Mast cell diseases include allergy and related conditions as well as malignancies. Here, we discuss the targets of existing and developing therapies used to treat these disease pathologies, classifying them into cell surface, intracellular, and extracellular categories. For each target discussed, we discuss drugs that are either the current standard of care, under development, or have indications for potential use. Finally, we discuss how novel technologies and tools can be used to take existing therapeutics to a new level of selectivity and potency against mast cells.</p><p><strong>Expert opinion: </strong>There are many broadly and very few selectively targeted therapeutics for mast cells in allergy and malignant disease. Combining existing targeting strategies with technology like nanoparticles will provide novel platforms to treat mast cell disease more selectively.</p>","PeriodicalId":12229,"journal":{"name":"Expert Opinion on Drug Delivery","volume":"20 2","pages":"205-222"},"PeriodicalIF":6.6,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9928520/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10780827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Magnetic nanoparticles: multifunctional tool for cancer therapy.","authors":"Sumera Khizar, Eslam Elkalla, Nadia Zine, Nicole Jaffrezic-Renault, Abdelhamid Errachid, Abdelhamid Elaissari","doi":"10.1080/17425247.2023.2166484","DOIUrl":"https://doi.org/10.1080/17425247.2023.2166484","url":null,"abstract":"<p><strong>Introduction: </strong>Cancer has one of the highest mortality rates globally. The traditional therapies used to treat cancer have harmful adverse effects. Considering these facts, researchers have explored new therapeutic possibilities with enhanced benefits. Nanoparticle development for cancer detection, in addition to therapy, has shown substantial progress over the past few years.</p><p><strong>Area covered: </strong>Herein, the latest research regarding cancer treatment employing magnetic nanoparticles (MNPs) in chemo-, immuno-, gene-, and radiotherapy along with hyperthermia is summarized, in addition to their physio-chemical features, advantages, and limitations for clinical translation have also been discussed.</p><p><strong>Expert opinion: </strong>MNPs are being extensively investigated and developed into effective modules for cancer therapy. They are highly functional tools aimed at cancer therapy owing to their excellent superparamagnetic, chemical, biocompatible, physical, and biodegradable properties.</p>","PeriodicalId":12229,"journal":{"name":"Expert Opinion on Drug Delivery","volume":"20 2","pages":"189-204"},"PeriodicalIF":6.6,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9331974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Farrah S Mohammed, Sacit Bulent Omay, Kevin N Sheth, Jiangbing Zhou
{"title":"Nanoparticle-based drug delivery for the treatment of traumatic brain injury.","authors":"Farrah S Mohammed, Sacit Bulent Omay, Kevin N Sheth, Jiangbing Zhou","doi":"10.1080/17425247.2023.2152001","DOIUrl":"10.1080/17425247.2023.2152001","url":null,"abstract":"<p><strong>Introduction: </strong>Traumatic brain injuries (TBIs) impact the breadth of society and remain without any approved pharmacological treatments. Despite successful Phase II clinical trials, the failure of many Phase III clinical trials may be explained by insufficient drug targeting and retention, preventing the proper attainment of an observable dosage threshold. To address this challenge, nanoparticles can be functionalized to protect pharmacological payloads, improve targeted drug delivery to sites of injury, and can be combined with supportive scaffolding to improve secondary outcomes.</p><p><strong>Areas covered: </strong>This review briefly covers the pathophysiology of TBIs and their subtypes, the current pre-clinical and clinical management strategies, explores the common models of focal, diffuse, and mixed traumatic brain injury employed in experimental animals, and surveys the existing literature on nanoparticles developed to treat TBIs.</p><p><strong>Expert opinion: </strong>Nanoparticles are well suited to improve secondary outcomes as their multifunctionality and customizability enhance their potential for efficient targeted delivery, payload protection, increased brain penetration, low off-target toxicity, and biocompatibility in both acute and chronic timescales.</p>","PeriodicalId":12229,"journal":{"name":"Expert Opinion on Drug Delivery","volume":"20 1","pages":"55-73"},"PeriodicalIF":6.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9983310/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9166931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tahoora Ghasemzadeh, Maliheh Hasannia, Khalil Abnous, Seyed Mohammad Taghdisi, Sirous Nekooei, Negar Nekooei, Mohammad Ramezani, Mona Alibolandi
{"title":"Preparation of targeted theranostic red blood cell membranes-based nanobubbles for treatment of colon adenocarcinoma.","authors":"Tahoora Ghasemzadeh, Maliheh Hasannia, Khalil Abnous, Seyed Mohammad Taghdisi, Sirous Nekooei, Negar Nekooei, Mohammad Ramezani, Mona Alibolandi","doi":"10.1080/17425247.2022.2152792","DOIUrl":"https://doi.org/10.1080/17425247.2022.2152792","url":null,"abstract":"<p><strong>Objectives: </strong>Designing and fabrication of theranostic systems based on nanoscale gaseous vesicular systems, named nanobubbles (NBs), attracted enormous interest in recent years. Biomimetic vesicular platform (V-RBC-M) can improve the pharmacokinetics of the prepared platform due to augmented circulation half-life, desirable biodegradability and biocompatibility and reduced immunogenicity.</p><p><strong>Methods: </strong>V-RBC-M were used for the encapsulation of lipophilic camptothecin (CPT) in the bilayer of vesicles through top-down method, followed by filling the core of V-RBC-M with inert SF6 gas to fabricate NBs with ultrasonic contrast enhancement capability (SF6-NB-CPT). In the next step, targeted NBs were formed <i>via</i> decoration of MUC1 aptamer on the surface of NBs (Apt-SF6-NB-CPT).</p><p><strong>Results: </strong>The designed bio-NBs indicated high encapsulation efficiency and the sustained release of CPT at pH 7.4. <i>In vitro</i> study demonstrated higher cellular uptake and cytotoxicity of Apt-SF6-NB-CPT compared to SF6-NB-CPT in MUC1-overexpressing cells (C26). <i>In vivo</i> antitumor efficacy of the prepared NBs on C26 bearing BALB/c mice showed greater therapeutic efficacy and survival rate for Apt-SF6-NB-CPT. In this regard, SF6-NB-CPT showed 58% tumor growth suppression while Apt-SF6-NB-CPT system provided 95% tumor growth suppression. Furthermore, echogenic capability of SF6-NB-CPT was demonstrated through <i>in vitro</i> and <i>in vivo</i> ultrasonic imaging.</p><p><strong>Conclusions: </strong>Our finding demonstrated that the prepared targeted NBs are a promising theranostic platform with effective therapeutic and diagnotic potentials.</p>","PeriodicalId":12229,"journal":{"name":"Expert Opinion on Drug Delivery","volume":"20 1","pages":"131-143"},"PeriodicalIF":6.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10730878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mahmoud Abdelkarim, Luis Perez-Davalos, Yasmin Abdelkader, Amr Abostait, Hagar I Labouta
{"title":"Critical design parameters to develop biomimetic organ-on-a-chip models for the evaluation of the safety and efficacy of nanoparticles.","authors":"Mahmoud Abdelkarim, Luis Perez-Davalos, Yasmin Abdelkader, Amr Abostait, Hagar I Labouta","doi":"10.1080/17425247.2023.2152000","DOIUrl":"https://doi.org/10.1080/17425247.2023.2152000","url":null,"abstract":"<p><strong>Introduction: </strong>Organ-on-a-chip (OOC) models are based on microfluidics and can recapitulate the healthy and diseased microstructure of organs<sup>1</sup> and tissues and the dynamic microenvironment inside the human body. However, the use of OOC models to evaluate the safety and efficacy of nanoparticles (NPs) is still in the early stages.</p><p><strong>Areas covered: </strong>The different design parameters of the microfluidic chip and the mechanical forces generated by fluid flow play a pivotal role in simulating the human environment. This review discusses the role of different key parameters on the performance of OOC models. These include the flow pattern, flow rate, shear stress (magnitude, rate, and distribution), viscosity of the media, and the microchannel dimensions and shape. We also discuss how the shear stress and other mechanical forces affect the transport of NPs across biological barriers, cell uptake, and their biocompatibility.</p><p><strong>Expert opinion: </strong>We describe several good practices and design parameters to consider for future OOC research. We submit that following these recommendations will help realize the full potential of the OOC models in the preclinical evaluation of novel therapies, including NPs.</p>","PeriodicalId":12229,"journal":{"name":"Expert Opinion on Drug Delivery","volume":"20 1","pages":"13-30"},"PeriodicalIF":6.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10664238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A tale of nucleic acid-ionizable lipid nanoparticles: Design and manufacturing technology and advancement.","authors":"Anindita De, Young Tag Ko","doi":"10.1080/17425247.2023.2153832","DOIUrl":"https://doi.org/10.1080/17425247.2023.2153832","url":null,"abstract":"ABSTRACT Introduction Ionizable lipid nanoparticles (LNPs) have been proven to have high encapsulation, cellular uptake, and effective endosomal escape and are therefore promising for nucleic acid delivery. The combination of ionizable lipids, helper lipids, cholesterol, and PEG lipids advances nucleic acid-ionizable LNPs and distinguishes them from liposomes, SLNs, NLCs, and other lipid particles. Solvent injection and microfluidics technology are the primary manufacturing techniques for commercialized ionizable LNPs. Microfluidics technology limitations restrict the rapid industrial scale-up and therapeutic effectiveness of ionized LNPs. Alternative manufacturing technologies and target-specific lipids are urgently needed. Area covered This article provides an in-depth update on the lipid compositions, clinical trials, and manufacturing technologies for nucleic acid-ionizable LNPs. For the first time, we updated the distinction between ionizable LNPs and other lipid particles. We also proposed an alternate thermocycling technology for high industrial scale-up and the stability of nucleic acid-ionizing LNPs. Expert opinion Nucleic acid-ionizable LNPs have a promising future for delivering nucleic acids in a target-specific manner. Though ionizing LNPs are in their early stages, they face several challenges, including only hepatic delivery, a short shelf life, and ultra-cold storage. In our opinion, ligand-based, target-specific synthesized novel lipids and advanced manufacturing technologies can easily overcome the restrictions and open up a new approach for improved therapeutic efficacy for chronic disorders. Graphical abstract","PeriodicalId":12229,"journal":{"name":"Expert Opinion on Drug Delivery","volume":"20 1","pages":"75-91"},"PeriodicalIF":6.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10730888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinghan Xin, Mengdi Qin, Genyang Ye, Haonan Gong, Mo Li, Xiaofan Sui, Bingyang Liu, Qiang Fu, Zhonggui He
{"title":"Hydrophobic ion pairing-based self-emulsifying drug delivery systems: a new strategy for improving the therapeutic efficacy of water-soluble drugs.","authors":"Jinghan Xin, Mengdi Qin, Genyang Ye, Haonan Gong, Mo Li, Xiaofan Sui, Bingyang Liu, Qiang Fu, Zhonggui He","doi":"10.1080/17425247.2023.2150758","DOIUrl":"https://doi.org/10.1080/17425247.2023.2150758","url":null,"abstract":"<p><strong>Introduction: </strong>Self-emulsifying drug delivery systems (SEDDS) are formulations consisting of oil phase, emulsifiers, and co-emulsifiers, which can be spontaneously emulsified in the body to form O/W microemulsion. Traditionally, SEDDS are used commercially for the improvement of oral absorption and <i>in vivo</i> performances for poorly water-soluble drugs. However, SEDDS formulations were rarely reported for the delivery of water-soluble drugs. Recent studies have found that SEDDS have the potential for water-soluble macromolecular drugs by the application of the hydrophobic ion pairing (HIP) technology.</p><p><strong>Areas covered: </strong>This review summarized the characteristics of HIP complexes in SEDDS and introduced their advantages and discussed the future prospects of HIP-based SEDDS in drug delivery.</p><p><strong>Expert opinion: </strong>Hydrophobic ion pairing (HIP) is a technology that combines lipophilic structures on polar counterions to increase the lipophilicity through electrostatic interaction. Recent studies showed that HIP-based SEDDS offer an effective way to increase the mucosal permeability and improve the chemical stability for antibiotics, proteases, DNA-based drugs, and other water-soluble macromolecular drugs. It is believed that HIP-based SEDDS offer a potential and attractive method capable of delivering hydrophilic macromolecules with ionizable groups for oral administration.</p>","PeriodicalId":12229,"journal":{"name":"Expert Opinion on Drug Delivery","volume":"20 1","pages":"1-11"},"PeriodicalIF":6.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9226667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinyue Wang, Halina Anton, Thierry Vandamme, Nicolas Anton
{"title":"Updated insight into the characterization of nano-emulsions.","authors":"Xinyue Wang, Halina Anton, Thierry Vandamme, Nicolas Anton","doi":"10.1080/17425247.2023.2154075","DOIUrl":"https://doi.org/10.1080/17425247.2023.2154075","url":null,"abstract":"<p><strong>Introduction: </strong>In most of the studies, nano-emulsion characterization is limited to their size distribution and zeta potential. In this review, we present an updated insight of the characterization methods of nano-emulsions, including new or unconventional experimental approaches to explore in depth the nano-emulsion properties.</p><p><strong>Area covered: </strong>We propose an overview of all the main techniques used to characterize nano-emulsions, including the most classical ones, up to <i>in vitro, ex vivo</i> and <i>in vivo</i> evaluation. Innovative approaches are then presented in the second part of the review that presents innovative, experimental techniques less known in the field of nano-emulsion such as the nanoparticle tracking analysis, small-angle X-ray scattering, Raman spectroscopy, and nuclear magnetic resonance. Finally, in the last part we discuss the use of lipophilic fluorescent probes and imaging techniques as an emerging tool to understand the nano-emulsion droplet stability, surface decoration, release mechanisms, and in <i>vivo fate</i>.</p><p><strong>Expert opinion: </strong>This review is mostly intended for a broad readership and provides key tools regarding the choice of the approach to characterize nano-emulsions. Innovative and uncommon methods will be precious to disclose the information potentially reachable behind a formulation of nano-emulsions, not always known in first intention and with conventional methods.</p>","PeriodicalId":12229,"journal":{"name":"Expert Opinion on Drug Delivery","volume":"20 1","pages":"93-114"},"PeriodicalIF":6.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10664570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}