Vincent Gélinas, Valérie E Paquet, Maude F Paquet, Antony T Vincent, Steve J Charette
{"title":"Whole-genome-based taxonomy as the most accurate approach to identify Flavobacterium species.","authors":"Vincent Gélinas, Valérie E Paquet, Maude F Paquet, Antony T Vincent, Steve J Charette","doi":"10.1093/femsle/fnae089","DOIUrl":"10.1093/femsle/fnae089","url":null,"abstract":"<p><p>The genus Flavobacterium comprises a diversity of species, including fish pathogens. Multiple techniques have been used to identify isolates of this genus, such as phenotyping, polymerase chain reaction genotyping, and in silico whole-genome taxonomy. In this study, we demonstrate that whole-genome-based taxonomy, using average nucleotide identity and molecular phylogeny, is the most accurate approach for Flavobacterium species. We obtained various isolated strains from official collections; these strains had been previously characterized by a third party using various identification methodologies. We analyzed isolates by PCR genotyping using previously published primers targeting gyrB and gyrA genes, which are supposedly specific to the genus Flavobacterium and Flavobacterium psychrophilum, respectively. After genomic analysis, nearly half of the isolates had their identities re-evaluated: around a quarter of them were re-assigned to other genera and two isolates are new species of flavobacteria. In retrospect, the phenotyping method was the least accurate. While gyrB genotyping was accurate with the isolates included in this study, bioinformatics analysis suggests that only 70% of the Flavobacterium species could be appropriately identified using this approach. We propose that whole-genome taxonomy should be used for accurate Flavobacterium identification, and we encourage bacterial collections to review the identification of isolates identified by phenotyping.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562821/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Faye C Morris, Yan Jiang, Ying Fu, Xenia Kostoulias, Gerald L Murray, Yusong Yu, Anton Y Peleg
{"title":"Lactate metabolism promotes in vivo fitness during Acinetobacter baumannii infection.","authors":"Faye C Morris, Yan Jiang, Ying Fu, Xenia Kostoulias, Gerald L Murray, Yusong Yu, Anton Y Peleg","doi":"10.1093/femsle/fnae032","DOIUrl":"10.1093/femsle/fnae032","url":null,"abstract":"<p><p>Acinetobacter baumannii is one of the most prevalent causes of nosocomial infections worldwide. However, a paucity of information exists regarding the connection between metabolic capacity and in vivo bacterial fitness. Elevated lactate is a key marker of severe sepsis. We have previously shown that the putative A. baumannii lactate permease gene, lldP, is upregulated during in vivo infection. Here, we confirm that lldP expression is upregulated in three A. baumannii strains during a mammalian systemic infection. Utilising a transposon mutant disrupted for lldP in the contemporary clinical strain AB5075-UW, and a complemented strain, we confirmed its role in the in vitro utilisation of l-(+)-lactate. Furthermore, disruption of the lactate metabolism pathway resulted in reduced bacterial fitness during an in vivo systemic murine competition assay. The disruption of lldP had no impact on the susceptibility of this strain to complement mediated killing by healthy human serum. However, growth in biologically relevant concentrations of lactate observed during severe sepsis, led to bacterial tolerance to killing by healthy human blood, a phenotype that was abolished in the lldP mutant. This study highlights the importance of the lactate metabolism pathway for survival and growth of A. baumannii during infection.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126152/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140891705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enzymatic characterization of five thioredoxins and a thioredoxin reductase from Myxococcus xanthus.","authors":"Ryota Tanifuji, Yoshio Kimura","doi":"10.1093/femsle/fnae058","DOIUrl":"10.1093/femsle/fnae058","url":null,"abstract":"<p><p>Thioredoxin (Trx) is a disulfide-containing redox protein that functions as a disulfide oxidoreductase. Myxococcus xanthus contains five Trxs (Trx1-Trx5) and one Trx reductase (TrxR). Trxs typically have a CGPC active-site motif; however, M. xanthus Trxs have slightly different active-site sequences, with the exception of Trx4. The five Trxs of M. xanthus exhibited reduced activities against insulin, 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), cystine, glutathione disulfide (GSSG), S-nitrosoglutathione (GSNO), and H2O2 in the presence of TrxR. Myxococcus xanthus adenylate kinase and serine/threonine phosphatase activities, which were increased by the addition of dithiothreitol, were activated by the addition of Trxs and TrxR. Among these, Trx1, which has a CAPC sequence in its active site, exhibited the highest reducing activity with the exception of GSNO. Myxococcus xanthus TrxR showed weak reducing activity towards DTNB, GSSG, GSNO, and H2O2, suggesting that it has broad substrate specificity, unlike previously reported low-molecular-weight TrxRs. TrxR reduced oxidized Trx1 as the best substrate, with a kcat/Km value of 0.253 min-1 µM-1, which was 10-28-fold higher than that of the other Trxs. These results suggest that all Trxs possess reducing activity and that Trx1 may be the most functional in M. xanthus because TrxR most efficiently reduces oxidized Trx1.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
José Eduardo Arteaga, Ernesto Rivera-Becerril, Sylvie Le Borgne, Juan-Carlos Sigala
{"title":"Influence of furfural on the physiology of Acinetobacter baylyi ADP1.","authors":"José Eduardo Arteaga, Ernesto Rivera-Becerril, Sylvie Le Borgne, Juan-Carlos Sigala","doi":"10.1093/femsle/fnae059","DOIUrl":"10.1093/femsle/fnae059","url":null,"abstract":"<p><p>Pretreatment of lignocellulosic biomass produces growth inhibitory substances such as furfural which is toxic to microorganisms. Acinetobacter baylyi ADP1 cannot use furfural as a carbon source, instead it biotransforms this compound into difurfuryl ether using the reduced nicotinamide adenine dinucleotide (NADH)-dependent dehydrogenases AreB and FrmA during aerobic acetate catabolism. However, NADH consumption for furfural biotransformation compromises aerobic growth of A. baylyi ADP1. Depending on the growth phase, several genes related to acetate catabolism and oxidative phosphorylation changed their expression indicating that central metabolic pathways were affected by the presence of furfural. During the exponential growth phase, reactions involved in the formation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) (icd gene) and NADH (sfcA gene) were preferred when furfural was present. Therefore a higher NADH and NADPH production might support furfural biotransformation and biomass production, respectively. In contrast, in the stationary growth phase genes of the glyoxylate shunt were overexpressed probably to save carbon compounds for biomass formation, and only NADH regeneration was appreciated. Finally, disruption of the frmA or areB gene in A. baylyi ADP1 led to a decrease in growth adaptation and in the capacity to biotransform furfural. The characterization of this physiological behavior clarifies the impact of furfural in Acinetobacter metabolism.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11384913/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Temporal control of Staphylococcus aureus intracellular pH by sodium and potassium.","authors":"Julia K Hilliard, Casey M Gries","doi":"10.1093/femsle/fnae100","DOIUrl":"10.1093/femsle/fnae100","url":null,"abstract":"<p><p>Adaptation to environmental change during both colonization and infection is essential to the pathogenesis of Staphylococcus aureus. Like other bacterial pathogens that require potassium to fulfill nutritional and chemiosmotic requirements, S. aureus has been shown to utilize potassium transport to modulate virulence gene expression, antimicrobial resistance, and osmotic tolerance. Recent studies examining the role for potassium uptake in mediating S. aureus physiology have also described its contribution in mediating carbon flux within central metabolism and generation of a proton motive force. Here, we utilize a pH-sensitive green fluorescent protein to examine the temporal regulation of S. aureus intracellular pH by potassium and sodium under various environmental conditions, including extracellular pH and antibiotic stress. Our results distinguish unique conditions and transport mechanisms that utilize these ions to modulate cytoplasmic pH homeostasis, and they identify these processes as a novel mechanism of intrinsic ampicillin resistance in S. aureus.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636269/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vergel Ledesma, Thibaut Vanbaelen, Zina Gestels, Nele Panis, Said Abdellati, Tessa de Block, Irith De Baetselier, Dorien Van den Bossche, Sheeba Santhini Manoharan-Basil, Chris Kenyon
{"title":"Measuring individual colony MICs is a more sensitive method to detect the effect of antimicrobials on antimicrobial susceptibility than the proportion of colonies resistant.","authors":"Vergel Ledesma, Thibaut Vanbaelen, Zina Gestels, Nele Panis, Said Abdellati, Tessa de Block, Irith De Baetselier, Dorien Van den Bossche, Sheeba Santhini Manoharan-Basil, Chris Kenyon","doi":"10.1093/femsle/fnae104","DOIUrl":"10.1093/femsle/fnae104","url":null,"abstract":"<p><p>The ResistAZM randomized controlled trial found that the receipt of ceftriaxone/azithromycin, compared to ceftriaxone was not associated with an increase in the proportion of oral commensal Neisseria spp. and streptococci with azithromycin resistance 14 days after treatment. We repeated the analyses by measuring the minimum inhibitory concentrations (MICs) of azithromycin and ceftriaxone for individual colonies of commensal Neisseria spp. and streptococci at day 0 and day 14 in both arms. The receipt of ceftriaxone/azithromycin but not ceftriaxone was associated with an increase in azithromycin MIC for both Neisseria spp. (P < 0.0001) and streptococci (P = 0.0076). Likewise, ceftriaxone/azithromycin but not ceftriaxone monotherapy was associated with an increase in ceftriaxone MICs in Neisseria spp. (P = 0.0035). Whereas the proportion method failed to detect an association between the receipt of azithromycin and increased macrolide resistance, the MIC distribution method detected this effect. The MIC distribution method is thus a more sensitive method to assess the effect of antimicrobials on antimicrobial susceptibility.</p><p><strong>Background: </strong>The ResistAZM randomized controlled trial found that the receipt of ceftriaxone/azithromycin, compared to ceftriaxone was not associated with an increase in the proportion of oral commensal Neisseria spp. and streptococci with azithromycin resistance 14 days after treatment.</p><p><strong>Methods: </strong>We repeated the analyses by measuring the minimum inhibitory concentrations (MICs) of azithromycin and ceftriaxone for individual colonies of commensal Neisseria spp. and streptococci at day 0 and day 14 in both arms.</p><p><strong>Results: </strong>The receipt of ceftriaxone/azithromycin but not ceftriaxone was associated with an increase in azithromycin MIC for both Neisseria spp. (P < 0.0001) and streptococci (P = 0.0076). Likewise, ceftriaxone/azithromycin but not ceftriaxone monotherapy was associated with an increase in ceftriaxone MICs in Neisseria spp. (P = 0.0035).</p><p><strong>Conclusions: </strong>Whereas the proportion method failed to detect an association between the receipt of azithromycin and increased macrolide resistance, the MIC distribution method detected this effect. The MIC distribution method is thus a more sensitive method to assess the effect of antimicrobials on antimicrobial susceptibility.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of sample storage temperature and duration on the detection of foliar endophytes of tea plants (Camellia sinensis L.) in summer and winter.","authors":"Phyu Mar Win, Norihisa Matsushita, Kenji Fukuda","doi":"10.1093/femsle/fnae035","DOIUrl":"10.1093/femsle/fnae035","url":null,"abstract":"<p><p>Seasonal changes in the diversity of tea plant endophytic fungi and the effects of sample storage conditions on detection were analyzed. Tea leaves were collected from the Saitama Tea Research Institute in Japan during winter (January 2020) and summer (August 2020). The effects of storage temperature (5, 10, 20, 25, and 30°C) and durations (1, 2, 3, 4, 5, 6, and 7 days) on endophytic fungal diversity and community structure were investigated. In summer, storage period and temperature did not affect the fungal colonization rate, frequency, and composition. In winter, storage temperature and period significantly affected the endophytic community structure. Fungal diversity was higher in winter than in summer. Positive relationships between diversity index and storage temperature and period were observed in winter, whereas the opposite trend was observed in summer. Our findings provide insight into the ecology of foliar endophytes of tea plants and the importance of proper sample collection and storage for microbiome studies.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141310371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spontaneous resolution or antibiotic effectiveness? Reflection on a case of pediatric urinary tract infections caused by Enterococcus raffinosus.","authors":"Mengshuang Zhang, Rui Qin, Xuzhan Zhang, Liping Ge, Guixia Li, Chen Chen, Xuedong Cai","doi":"10.1093/femsle/fnae030","DOIUrl":"10.1093/femsle/fnae030","url":null,"abstract":"<p><p>Enterococcus raffinosus, named by Collins et al. in 1989, is a cocci-shaped bacterium that typically appears in pairs or short chains. As a Gram-positive and non-motile bacterium, it grows at 10°C-45°C, exhibiting negative peroxidase activity [1]. It is a normal flora in the oropharynx and gastrointestinal tract of domestic cats [2] and can also be isolated from human rectal swabs [3], it belongs to the same genus Enterococcus as Enterococcus faecalis and Enterococcus faecium. Enterococcus faecalis and Enterococcus faecium constitute 90% of clinically isolated strains. However, the incidence of other enterococci, excluding E. faecalis and E. faecium, is on the rise [4]. In this case report, a patient with pediatric urinary tract infections caused by E. raffinosus was presented, and a summary of relevant literature was provided.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140916122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raphaël Defaix, Jep Lokesh, Jessica Calo, Sandra Biasutti, Anne Surget, Frédéric Terrier, José Luis Soengas, Stéphane Panserat, Karine Ricaud
{"title":"Rapid adaptation of the rainbow trout intestinal microbiota to the use of a high-starch 100% plant-based diet.","authors":"Raphaël Defaix, Jep Lokesh, Jessica Calo, Sandra Biasutti, Anne Surget, Frédéric Terrier, José Luis Soengas, Stéphane Panserat, Karine Ricaud","doi":"10.1093/femsle/fnae039","DOIUrl":"10.1093/femsle/fnae039","url":null,"abstract":"<p><p>Short-term adaptation of the microbiota could promote nutrient degradation and the host health. While numerous studies are currently undertaking feeding trials using sustainable diets for the aquaculture industry, the extent to which the microbiota adapts to these novel diets is poorly described. The incorporation of carbohydrates (CHO) within a 100% plant-based diet could offer a novel, cost-effective energy source that is readily available, potentially replacing the protein component in the diets. In this study, we investigated the short-term (3 weeks) effects of a high CHO, 100% plant-based diet on the mucosal and digesta associated microbiota diversity and composition, as well as several metabolic parameters in rainbow trout. We highlighted that the mucosa is dominated by Mycoplasma (44.86%). While the diets did not have significant effects on the main phyla (Proteobacteria, Firmicutes, and Actinobacteria), after 3 weeks, a lower abundance of Bacillus genus, and higher abundances of four lactic-acid bacteria were demonstrated in digesta. In addition, no post-prandial hyperglycemia was observed with high carbohydrate intake. These results provide evidence for the rapid adaptation of the gut microbiota and host metabolism to high CHO in combination with 100% plant ingredients in rainbow trout.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141293231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The physiological role of Acinetobacter baumannii DacC is exerted through influencing cell shape, biofilm formation, the fitness of survival, and manifesting DD-carboxypeptidase and beta-lactamase dual-enzyme activities.","authors":"Shilpa Pal, Diamond Jain, Sarmistha Biswal, Sumit Kumar Rastogi, Gaurav Kumar, Anindya S Ghosh","doi":"10.1093/femsle/fnae079","DOIUrl":"10.1093/femsle/fnae079","url":null,"abstract":"<p><p>With the growing threat of drug-resistant Acinetobacter baumannii, there is an urgent need to comprehensively understand the physiology of this nosocomial pathogen. As penicillin-binding proteins are attractive targets for antibacterial therapy, we have tried to explore the physiological roles of two putative DD-carboxypeptidases, viz., DacC and DacD, in A. baumannii. Surprisingly, the deletion of dacC resulted in a reduced growth rate, loss of rod-shaped morphology, reduction in biofilm-forming ability, and enhanced susceptibility towards beta-lactams. In contrast, the deletion of dacD had no such effect. Interestingly, ectopic expression of dacC restored the lost phenotypes. The ∆dacCD mutant showed properties similar to the ∆dacC mutant. Conversely, in vitro enzyme kinetics assessments reveal that DacD is a stronger DD-CPase than DacC. Finally, we conclude that DacC might have DD-CPase and beta-lactamase activities, whereas DacD is a strong DD-CPase.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}