{"title":"Recent Developments in Sediment Toxicity Testing","authors":"Michiel T. O. Jonker, Alan J. Jones","doi":"10.1002/etc.5942","DOIUrl":"10.1002/etc.5942","url":null,"abstract":"<p>Sediment is an important environmental compartment inhabited by many different aquatic species, including benthic plants, vertebrates, and invertebrates. These species rely on the sediment for rooting, shelter, and/or feeding. Unfortunately, sediments also act as an important sink of certain anthropogenic contaminants, such as heavy metals and hydrophobic organic chemicals, which tend to accumulate in this aquatic compartment. Because many of these contaminants are toxic, they can potentially impact natural processes or habitat quality and thereby be harmful to aquatic ecosystems. Sediment toxicity tests have been developed to investigate potential toxicity to benthic species; these assays typically test the survival (or other response) of organisms after exposure to sediments collected from the field or contaminated in the laboratory. The array of sediment toxicity tests originally developed has gone through several iterations, resulting in the current use of standardized assays that employ standard test organisms and simple, easily quantifiable responses (e.g., death or reproduction). However, the field of sediment toxicity testing continues to evolve through new assays, test organisms, and dosing strategies.</p><p>In early 2022, a (virtual) workshop was organized as part of a European Chemical Industry Council–funded project (Cefic-LRI ECO43). Although the ECO43 project specifically focused on improving sediment toxicity testing with difficult-to-test, highly hydrophobic organic substances, the scope of the workshop reached beyond this focus. Approximately 40 people from academia, industry, and the regulatory field discussed the current status and future challenges and needs of sediment toxicity testing for plant protection products, substances of unknown or variable composition, complex reaction products and biological materials (UVCBs), offshore chemicals, and field sediments, as well as modeling and regulatory aspects of sediment toxicity. After the workshop, the idea arose to write critical reviews on the topics discussed during the workshop, combine these with manuscripts resulting from the Cefic-LRI ECO43 project, stimulate colleagues to write other manuscripts on sediment toxicity testing, and publish the collection of manuscripts in a special series in <i>Environmental Toxicology and Chemistry</i>. To identify colleagues who would be interested in jointly submitting manuscripts on sediment toxicity testing, forces were joined with the Society of Environmental Toxicology and Chemistry Sediment Interest Group, which has been active in the field of sediment research for many years, with sediment toxicity being one of its core topics. Despite the busy schedule of all our sediment toxicity colleagues, we managed to put together a collection of eight interesting scientific papers, all dealing with sediment toxicity testing, and particularly focusing on recent developments in this important field of environmental research.</p><p>In the fir","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":"43 8","pages":"1695-1696"},"PeriodicalIF":3.6,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/etc.5942","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141455943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Issue Information - Cover","authors":"","doi":"10.1002/etc.5664","DOIUrl":"https://doi.org/10.1002/etc.5664","url":null,"abstract":"","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":"43 7","pages":"C1"},"PeriodicalIF":3.6,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/etc.5664","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141488638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial Board and Table of Contents","authors":"","doi":"10.1002/etc.5663","DOIUrl":"https://doi.org/10.1002/etc.5663","url":null,"abstract":"","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":"43 7","pages":"1459-1462"},"PeriodicalIF":3.6,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/etc.5663","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141488639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jaylen L. Sims, Alexander R. Cole, Zachary S. Moran, Charles M. Mansfield, Bianca Possamai, Macarena Rojo, Ryan S. King, Cole W. Matson, Bryan W. Brooks
{"title":"ET&C Best Paper of 2023","authors":"","doi":"10.1002/etc.5933","DOIUrl":"10.1002/etc.5933","url":null,"abstract":"<p>WINNER OF THE 2023 BEST PAPER AWARD:</p><p>Genes-to-Pathways Species Conservation Analysis: Enabling the Exploration of Conservation of Biological Pathways and Processes Across Species</p><p><i>Claudia Rivetti, Jade Houghton, Danilo Basili, Geoff Hodges, and Bruno Campos</i></p><p>DOI:doi.org/10.1002/etc.5600</p><p>The development of the Genes-to-Pathways Species Conservation Analysis (G2P-SCAN), a novel R package designed to enhance the understanding of cross-species conservation of biological pathways, is a major leap forward towards integrating computational biology approaches into safety assessments. By integrating data from multiple databases and focusing on gene orthologs, protein families, entities, and reactions, G2P-SCAN offers a comprehensive tool for analyzing the conservation of biological processes across various species. This methodology supports the reduction of animal testing by enabling more accurate species extrapolation and risk assessment.</p><p>The paper's significance lies in its potential to improve the accessibility and synthesis of genomic data, thus facilitating the application of mechanistically based data in ecological risk assessments. The authors demonstrate the utility of G2P-SCAN through five case studies, validating its effectiveness in identifying conservation and susceptibility at the pathway level across different species. This work not only advances scientific understanding but also aligns with global regulatory shifts towards new approach methodologies (NAMs), promoting the use of computational and cell-based approaches in safety assessments.</p><p>REFERENCE</p><p>Rivetti, C., Houghton, J., Basili, D., Hodges, G., & Campos, B. (2023), Genes-to-pathways species conservation analysis: Enabling the exploration of conservation of biological pathways and processes across species. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 1152–1166.</p><p>Jana Asselmann</p><p><i>Ghent University</i></p><p><i>Ghent, Belgium</i></p><p></p><p>Best Paper Award winner Claudia Rivetti.</p><p></p><p>Models used to predict chemical bioaccumulation in fish from in vitro biotransformation rates require accurate estimates of blood–water partitioning and chemical volume of distribution</p><p><i>Leslie J. Saunders and John W. Nichols</i></p><p>DOI:10.1002/etc.5503</p><p></p><p>Arsenic and mercury distribution in an aquatic food chain: Importance of femtoplankton and picoplankton filtration fractions</p><p><i>Abdullah M. Alowaifeer, Scott Clingenpeel, Jinjun Kan, Patricia E. Bigelow, Masafumi Yoshinaga, Brian Bothner, and Timothy R. McDermott</i></p><p>DOI:10.1002/etc.5516</p><p></p><p>Sublethal exposure of per- and polyfluoroalkyl substances of varying chain length and polar functionality results in distinct metabolic responses in <i>Daphnia magna</i></p><p><i>Lisa M. Labine, Erico A. Oliveira Pereira, Sonya Kleywegt, Karl J. Jobst, André J. Simpson, and Myrna J. Simpson</i></p><p>DOI:10.1002/etc.5517</p><p></p><p>Priorit","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":"43 7","pages":"1463-1465"},"PeriodicalIF":3.6,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/etc.5933","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ning Wang, James L. Kunz, Christopher D. Ivey, Danielle Cleveland, Jeffery A. Steevens
{"title":"Evaluation of Short-Term Mussel Test for Estimating Toxicity","authors":"Ning Wang, James L. Kunz, Christopher D. Ivey, Danielle Cleveland, Jeffery A. Steevens","doi":"10.1002/etc.5935","DOIUrl":"10.1002/etc.5935","url":null,"abstract":"<p>Effect concentrations of ammonia, nickel, sodium chloride, and potassium chloride from short-term 7-day tests were compared to those from standard chronic 28-day toxicity tests with juvenile mussels (fatmucket, <i>Lampsilis siliquoidea</i>) to evaluate the sensitivities of the 7-day tests. The effect concentrations for nickel (59 µg Ni/L), chloride (316–519 mg Cl/L, a range from multiple tests), and potassium (15 mg K/L) obtained from the 7-day tests were within a range of effect concentrations for each corresponding chemical in the 28-day tests (41–91 µg Ni/L, 251–>676 mg Cl/L, 15–23 mg K/L), whereas the 7-day ammonia effect concentration (0.40 mg/L total ammonia nitrogen; TAN) was up to 3.3-fold greater than the 28-day effect concentrations (0.12–0.36 mg TAN/L) but with overlapped 95% confidence limits. These results indicate that the 7-day tests produced similar estimates compared to the 28-day tests. Further studies are needed to evaluate the 7-day test sensitivity using additional chemicals with different modes of toxic action. <i>Environ Toxicol Chem</i> 2024;43:2020–2025. Published 2024. This article is a U.S. Government work and is in the public domain in the USA.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":"43 9","pages":"2020-2025"},"PeriodicalIF":3.6,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Larissa Luiza dos Reis, Cínthia Bruno de Abreu, Renan Castelhano Gebara, Giseli Swerts Rocha, Elson Longo, Adrislaine da Silva Mansano, Maria da Graça Gama Melão