{"title":"鱼类早期毒性和环境相关性:高剂量毒性试验告诉我们什么?","authors":"James P Meador, Beate I Escher","doi":"10.1093/etojnl/vgaf002","DOIUrl":null,"url":null,"abstract":"<p><p>The early-life stage (ELS) toxicity syndrome for fish is well described and has been reported in hundreds of toxicity studies. It is generally characterized by a reduced heart rate, yolk sac and pericardial edemas, and various morphological abnormalities, the most common being spinal curvature. For many of those studies, it appears that the ELS toxicity syndrome is the result of nonspecific (baseline) toxicity that occurs at aqueous and whole-body concentrations that are just below lethal concentrations. Baseline toxicity is essentially a nonspecific response that results from chemicals accumulating in and disturbing the function of biological membranes that leads to lethality and sublethal effects at relatively high doses. The commonality of this acute ELS toxicity syndrome among highly diverse organic and inorganic chemicals is remarkable. It is important to identify baseline toxicity because it is considered minimal toxicity that acts in all tissues and cells, and it has the potential to impair all cellular functions. This means if an effect is observed around baseline-toxic concentrations, it is likely that other cellular functions are also affected (i.e., the effect is not specific). The fish ELS toxicity syndrome can also be the result of specific effects involving receptor interactions; therefore, we emphasize the importance of distinguishing between specific and nonspecific toxicity responses to provide the most relevant data for environmental risk assessment.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":" ","pages":"1222-1227"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fish early-life stage toxicity and environmental relevance: what does high-dose toxicity testing tell us?\",\"authors\":\"James P Meador, Beate I Escher\",\"doi\":\"10.1093/etojnl/vgaf002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The early-life stage (ELS) toxicity syndrome for fish is well described and has been reported in hundreds of toxicity studies. It is generally characterized by a reduced heart rate, yolk sac and pericardial edemas, and various morphological abnormalities, the most common being spinal curvature. For many of those studies, it appears that the ELS toxicity syndrome is the result of nonspecific (baseline) toxicity that occurs at aqueous and whole-body concentrations that are just below lethal concentrations. Baseline toxicity is essentially a nonspecific response that results from chemicals accumulating in and disturbing the function of biological membranes that leads to lethality and sublethal effects at relatively high doses. The commonality of this acute ELS toxicity syndrome among highly diverse organic and inorganic chemicals is remarkable. It is important to identify baseline toxicity because it is considered minimal toxicity that acts in all tissues and cells, and it has the potential to impair all cellular functions. This means if an effect is observed around baseline-toxic concentrations, it is likely that other cellular functions are also affected (i.e., the effect is not specific). The fish ELS toxicity syndrome can also be the result of specific effects involving receptor interactions; therefore, we emphasize the importance of distinguishing between specific and nonspecific toxicity responses to provide the most relevant data for environmental risk assessment.</p>\",\"PeriodicalId\":11793,\"journal\":{\"name\":\"Environmental Toxicology and Chemistry\",\"volume\":\" \",\"pages\":\"1222-1227\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Toxicology and Chemistry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/etojnl/vgaf002\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology and Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/etojnl/vgaf002","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Fish early-life stage toxicity and environmental relevance: what does high-dose toxicity testing tell us?
The early-life stage (ELS) toxicity syndrome for fish is well described and has been reported in hundreds of toxicity studies. It is generally characterized by a reduced heart rate, yolk sac and pericardial edemas, and various morphological abnormalities, the most common being spinal curvature. For many of those studies, it appears that the ELS toxicity syndrome is the result of nonspecific (baseline) toxicity that occurs at aqueous and whole-body concentrations that are just below lethal concentrations. Baseline toxicity is essentially a nonspecific response that results from chemicals accumulating in and disturbing the function of biological membranes that leads to lethality and sublethal effects at relatively high doses. The commonality of this acute ELS toxicity syndrome among highly diverse organic and inorganic chemicals is remarkable. It is important to identify baseline toxicity because it is considered minimal toxicity that acts in all tissues and cells, and it has the potential to impair all cellular functions. This means if an effect is observed around baseline-toxic concentrations, it is likely that other cellular functions are also affected (i.e., the effect is not specific). The fish ELS toxicity syndrome can also be the result of specific effects involving receptor interactions; therefore, we emphasize the importance of distinguishing between specific and nonspecific toxicity responses to provide the most relevant data for environmental risk assessment.
期刊介绍:
The Society of Environmental Toxicology and Chemistry (SETAC) publishes two journals: Environmental Toxicology and Chemistry (ET&C) and Integrated Environmental Assessment and Management (IEAM). Environmental Toxicology and Chemistry is dedicated to furthering scientific knowledge and disseminating information on environmental toxicology and chemistry, including the application of these sciences to risk assessment.[...]
Environmental Toxicology and Chemistry is interdisciplinary in scope and integrates the fields of environmental toxicology; environmental, analytical, and molecular chemistry; ecology; physiology; biochemistry; microbiology; genetics; genomics; environmental engineering; chemical, environmental, and biological modeling; epidemiology; and earth sciences. ET&C seeks to publish papers describing original experimental or theoretical work that significantly advances understanding in the area of environmental toxicology, environmental chemistry and hazard/risk assessment. Emphasis is given to papers that enhance capabilities for the prediction, measurement, and assessment of the fate and effects of chemicals in the environment, rather than simply providing additional data. The scientific impact of papers is judged in terms of the breadth and depth of the findings and the expected influence on existing or future scientific practice. Methodological papers must make clear not only how the work differs from existing practice, but the significance of these differences to the field. Site-based research or monitoring must have regional or global implications beyond the particular site, such as evaluating processes, mechanisms, or theory under a natural environmental setting.