Xin Ji, Ping Zhang, Zhiqiang Lu, Jian Zhao, Minghua Wang, Haiyan Shi
{"title":"Toxic effects of flufenacet on zebrafish at various developmental stages.","authors":"Xin Ji, Ping Zhang, Zhiqiang Lu, Jian Zhao, Minghua Wang, Haiyan Shi","doi":"10.1093/etojnl/vgaf108","DOIUrl":null,"url":null,"abstract":"<p><p>Flufenacet is an aryloxy acetamide herbicide. The potential risks of flufenacet to the aquatic ecosystem remain unclear. In this study, the acute toxicity and developmental toxic effects of flufenacet on zebrafish (Danio rerio) were assessed at three different life stages: embryo, larvae, and adult. Larvae at 3 days post-hatch and adult zebrafish exhibited higher sensitivity to the flufenacet compared to embryos. The 96-hour lethal concentration 50 (LC50) values ranked as embryos (9.79 ± 1.22 mg/L) > adults (4.36 ± 0.56 mg/L) and larvae (3.89 ± 0.98 mg/L), highlighting larvae as the most sensitive life stage. Flufenacet exhibited moderate acute toxicity to adult zebrafish. Flufenacet exposure induced various developmental abnormalities in zebrafish, including increased mortality, delayed hatching, reduced voluntary movement, inhibited hatching rate, shortened body length, bent spine, and edema in the pericardial and yolk sac regions. Additionally, the expression levels of ache, mbp, gap43, and syn2a were dose-dependently down-regulated following exposure to various concentrations of flufenacet, indicating neurotoxic effects in zebrafish embryos. Specifically, the expression of gata4 and nkx2.5 was significantly down-regulated only in the 5 mg/L of flufenacet treatment group, while tbx5 and myh6 expression showed a dose-dependent significant down-regulation. myl7 expression was significantly up-regulated in a dose-dependent manner, suggesting that flufenacet may induce zebrafish cardiac dysplasia through modulation of cardiac-related genes (nkx2.5, tbx5, gata4, myl7, and myh6). Expression of HPT-axis-related genes (crh, tshβ, tra, trb, and dio2) was significantly down-regulated in a dose-dependent manner, indicating potential endocrine disruption of the thyroid gland in zebrafish embryos. These results contribute additional evidence regarding the aquatic toxicity of flufenacet, which is crucial for environmental risk assessment.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology and Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/etojnl/vgaf108","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Flufenacet is an aryloxy acetamide herbicide. The potential risks of flufenacet to the aquatic ecosystem remain unclear. In this study, the acute toxicity and developmental toxic effects of flufenacet on zebrafish (Danio rerio) were assessed at three different life stages: embryo, larvae, and adult. Larvae at 3 days post-hatch and adult zebrafish exhibited higher sensitivity to the flufenacet compared to embryos. The 96-hour lethal concentration 50 (LC50) values ranked as embryos (9.79 ± 1.22 mg/L) > adults (4.36 ± 0.56 mg/L) and larvae (3.89 ± 0.98 mg/L), highlighting larvae as the most sensitive life stage. Flufenacet exhibited moderate acute toxicity to adult zebrafish. Flufenacet exposure induced various developmental abnormalities in zebrafish, including increased mortality, delayed hatching, reduced voluntary movement, inhibited hatching rate, shortened body length, bent spine, and edema in the pericardial and yolk sac regions. Additionally, the expression levels of ache, mbp, gap43, and syn2a were dose-dependently down-regulated following exposure to various concentrations of flufenacet, indicating neurotoxic effects in zebrafish embryos. Specifically, the expression of gata4 and nkx2.5 was significantly down-regulated only in the 5 mg/L of flufenacet treatment group, while tbx5 and myh6 expression showed a dose-dependent significant down-regulation. myl7 expression was significantly up-regulated in a dose-dependent manner, suggesting that flufenacet may induce zebrafish cardiac dysplasia through modulation of cardiac-related genes (nkx2.5, tbx5, gata4, myl7, and myh6). Expression of HPT-axis-related genes (crh, tshβ, tra, trb, and dio2) was significantly down-regulated in a dose-dependent manner, indicating potential endocrine disruption of the thyroid gland in zebrafish embryos. These results contribute additional evidence regarding the aquatic toxicity of flufenacet, which is crucial for environmental risk assessment.
期刊介绍:
The Society of Environmental Toxicology and Chemistry (SETAC) publishes two journals: Environmental Toxicology and Chemistry (ET&C) and Integrated Environmental Assessment and Management (IEAM). Environmental Toxicology and Chemistry is dedicated to furthering scientific knowledge and disseminating information on environmental toxicology and chemistry, including the application of these sciences to risk assessment.[...]
Environmental Toxicology and Chemistry is interdisciplinary in scope and integrates the fields of environmental toxicology; environmental, analytical, and molecular chemistry; ecology; physiology; biochemistry; microbiology; genetics; genomics; environmental engineering; chemical, environmental, and biological modeling; epidemiology; and earth sciences. ET&C seeks to publish papers describing original experimental or theoretical work that significantly advances understanding in the area of environmental toxicology, environmental chemistry and hazard/risk assessment. Emphasis is given to papers that enhance capabilities for the prediction, measurement, and assessment of the fate and effects of chemicals in the environment, rather than simply providing additional data. The scientific impact of papers is judged in terms of the breadth and depth of the findings and the expected influence on existing or future scientific practice. Methodological papers must make clear not only how the work differs from existing practice, but the significance of these differences to the field. Site-based research or monitoring must have regional or global implications beyond the particular site, such as evaluating processes, mechanisms, or theory under a natural environmental setting.