Energy StoragePub Date : 2024-08-21DOI: 10.1002/est2.70017
Frederico Haasis, Oscar Solano, Daniel Dias, Bruno Borba
{"title":"Electric Vehicle Smart-Charging Control for Parking Lots Based on Individual State of Charge Priority","authors":"Frederico Haasis, Oscar Solano, Daniel Dias, Bruno Borba","doi":"10.1002/est2.70017","DOIUrl":"https://doi.org/10.1002/est2.70017","url":null,"abstract":"<div>\u0000 \u0000 <p>The integration of electric vehicles (EVs) into the power grid could pose challenges to power quality (PQ) depending on quantity of EVs and when they are connected. To mitigate these impacts without using drastic measures, such as disconnecting EVs, this study investigates centralized control strategies within parking facilities that prioritize EV charging based on individual State of Charge (SoC) levels. The study utilizes the IEEE 34 Bus system and conducts 3888 simulations for different scenarios to assess the impact of the quantity and placement of EVs in parking lots. The study applies the Monte Carlo method to compare the performance of different proposed controls: (i) limiting the charging current to a fixed level and (ii) varying the current based on the voltage droop step. Furthermore, Power Hardware-in-the-Loop (PHIL) simulations were carried out to validate the hierarchical control using the droop step control, demonstrating the best average performance in the previous scenarios. The findings indicated that the control responded within the expected timeframe and successfully addressed voltage sag issues, maintaining PQ in the distribution system in most cases, with its performance being influenced by the placement of parking lots in the network. Additionally, it was confirmed through quartiles that the classification based on SoC leads to a more balanced charging time for different SoC levels.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Energy StoragePub Date : 2024-08-20DOI: 10.1002/est2.70020
Raphael M. Obodo, Hope E. Nsude, Chimezie U. Eze, Miletus O. Duru, Imosobomeh L. Ikhioya, Joseph N. Anosike, Joseph N. Aniezi, Ekwevugbe Omugbe, Chinonso Mbamara, Ugochukwu C. Elejere, Muhammad Usman, Ishaq Ahmad, M. Maaza
{"title":"Investigating the Dual Synergistic Amalgamation of CeO2@WO3/GO Electrodes for Supercapacitor Application","authors":"Raphael M. Obodo, Hope E. Nsude, Chimezie U. Eze, Miletus O. Duru, Imosobomeh L. Ikhioya, Joseph N. Anosike, Joseph N. Aniezi, Ekwevugbe Omugbe, Chinonso Mbamara, Ugochukwu C. Elejere, Muhammad Usman, Ishaq Ahmad, M. Maaza","doi":"10.1002/est2.70020","DOIUrl":"https://doi.org/10.1002/est2.70020","url":null,"abstract":"<div>\u0000 \u0000 <p>Scientists and researchers are investigating new energy conversion and storage devices continuously because of the current global hike in energy crisis. In this study, we utilized graphene oxide (GO) and composites of transition metallic oxides (CeO<sub>2</sub>@WO<sub>3</sub>) to fabricate electrodes intended for use in supercapacitor electrodes. These electrodes' morphology demonstrates a uniform distribution of sphere and platelet nanoparticles. The XRD measurements for these manufactured electrodes showed a noticeable crystalline character. These electrodes have outstanding electrochemical performance due to their relatively low bandgap energies. The electrochemical tests demonstrated the exceptional charge storage capabilities of the different electrodes, suggesting that CeO<sub>2</sub>/GO, WO<sub>3</sub>/GO, and CeO<sub>2</sub>@WO<sub>3</sub>/GO electrodes could be useful electrodes for supercapacitor applications. Numerous electrochemical findings made it abundantly evident that the creation of bimetallic CeO<sub>2</sub>@WO<sub>3</sub>/GO composites enhanced the supercapacitive performance and cycle stability of the electrodes.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142021721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Energy StoragePub Date : 2024-08-06DOI: 10.1002/est2.70006
Tram Tran Bich Vo, Minh Thu Nguyen, Thanh Liem Pham, Trung Thien Nguyen, Van Gia Tran, Van Man Tran, Phung My Loan Le
{"title":"Investigation of an eco-friendly polyacrylic acid binder system on LiFePO4 cathode electrode processing to enhance the performance of coin-cell and pouch-cell graphite||LiFePO4 batteries","authors":"Tram Tran Bich Vo, Minh Thu Nguyen, Thanh Liem Pham, Trung Thien Nguyen, Van Gia Tran, Van Man Tran, Phung My Loan Le","doi":"10.1002/est2.70006","DOIUrl":"https://doi.org/10.1002/est2.70006","url":null,"abstract":"<p>This study investigates the influence of two types of binders (aqueous and nonaqueous) on the LiFePO<sub>4</sub> (LFP) electrode processing and its electrochemical properties. Specifically, polyvinylidene fluoride (PVDF) and polyacrylic acid (PAA) were dissolved in NMP (<i>N</i>-methyl-2-pyrrolidone) or the aqueous solvent (H<sub>2</sub>O) at varying mass ratios of 5%, 10%, and 15%. Binder durability and inertness were assessed by immersing prepared LFP electrodes in an electrolyte comprising 1.0 M LiPF<sub>6</sub> in EC:DEC:DMC (1:1:1 in vol%). Notably, PVDF/NMP 10% and PAA/H<sub>2</sub>O 10%-based electrodes displayed good durability without peeling. Electrochemical characteristics were evaluated through cycling voltammetry and galvanostatic cycling with potential limitation. The PAA/H<sub>2</sub>O 10%-based-LFP electrode exhibited a specific capacity of ~148.9 mAh g<sup>−1</sup> with a Coulombic efficiency (CE) of around 97.27%, surpassing PVDF/NMP 10%. The graphite||PAA/H<sub>2</sub>O 10%-based-LFP electrode in a full cell demonstrated higher capacity and superior retention after 30 cycles. In a pouch cell (6 cm × 4 cm), utilizing graphite||LFP with PAA/H<sub>2</sub>O 10%, a capacity of 25.5 mAh was achieved, maintaining 93% capacity with a CE of about 99% after 30 cycles at a rate of 0.1C.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Energy StoragePub Date : 2024-08-06DOI: 10.1002/est2.70012
Latha Malyala, Sampath Karingula, Thirupathi Bhookya, Gobi K Vengatajalabathy
{"title":"Development of Flexible High-Efficient Aluminum ion Supercapacitors With 2D Niobium MXene Electrode","authors":"Latha Malyala, Sampath Karingula, Thirupathi Bhookya, Gobi K Vengatajalabathy","doi":"10.1002/est2.70012","DOIUrl":"https://doi.org/10.1002/est2.70012","url":null,"abstract":"<div>\u0000 \u0000 <p>A high-performance aluminum-ion supercapacitor is fabricated using 2D few-layered Nb<sub>2</sub>CT<sub>x</sub> MXene, as an active electrode material and Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> electrolyte for efficient energy storage. Nb<sub>2</sub>CT<sub>x</sub> MXene has been synthesized from Nb<sub>2</sub>AlC MAX phase using HF. Nb<sub>2</sub>CT<sub>x</sub> MXene coated on carbon cloth (Nb@CC) displays a capacitance of 307 F g<sup>−1</sup> with 90% coulombic efficiency. The specific capacitance of Nb@CC in Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> electrolyte is exceptionally high compared to those (≤32.2 F g<sup>−1</sup>) in H<sub>2</sub>SO<sub>4</sub>, Na<sub>2</sub>SO<sub>4</sub>, and MgSO<sub>4</sub> electrolytes. Both symmetric and asymmetric aluminum ion supercapacitors are fabricated with Nb@CC electrode. The Nb@CC//Nb@CC symmetric device exhibits a capacitance of 122 F g<sup>−1</sup> with a high energy density (E<sub><i>d</i></sub>) of 33.2 Wh kg<sup>−1</sup> at 1.41 kW kg<sup>−1</sup> power density (P<sub><i>d</i></sub>). An asymmetric supercapacitor device (ASC), Nb@CC//CNT@CC, with carbon nanotube (CNT@CC) cathode delivers a maximum E<sub><i>d</i></sub> of 24.7 Wh kg<sup>−1</sup> at 3.41 kW kg<sup>−1</sup> P<sub><i>d</i></sub> and excellent stability with 90% capacitance retention after 4000 cycles. A remarkably high P<sub><i>d</i></sub> of 34 kW kg<sup>−1</sup> is maintained with 13.2 Wh kg<sup>−1</sup> E<sub><i>d</i></sub>, and the rate capability is 53% for a 10-fold increase in current density. These results offer the feasibility of efficient aqueous supercapacitors with Al-ion as guest species, presenting new possibilities for supercapacitors.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Si3N4 as an Alternative of Silicon for the Anode Application in All-Solid-State Li-Ion Batteries","authors":"Anil Kumar Sharma, Khushbu Sharma, Mukesh Kumar Gupta, Fangqin Guo, Takayuki Ichikawa, Ankur Jain, Shivani Agarwal","doi":"10.1002/est2.70010","DOIUrl":"https://doi.org/10.1002/est2.70010","url":null,"abstract":"<div>\u0000 \u0000 <p>The intermittent nature of renewable energy generation can be tackled by integrating them with electrochemical energy storage, which can also close the gap between supply and demand effectively. It has recently been demonstrated that Si<sub>3</sub>N<sub>4</sub>-based negative electrodes are a promising option for lithium-ion batteries due to their large theoretical capacity and appropriate working potential with extremely low polarization. In the present work, Si<sub>3</sub>N<sub>4</sub> was utilized as anode material in all-solid-state lithium-ion battery with lithium borohydride as a solid electrolyte and Li foil placed as a counter electrode. The electrochemical properties were investigated using galvanostatic charge/discharge profiling whereas the mechanism of lithiation delithiation was investigated in detail using x-ray diffraction (XRD). The highest capacity of the composite materials was obtained as 1700 mAhg<sup>−1</sup> at 0.05 C current rate in the first cycle, which is reduced to 370 in 5 cycles. However, a stability in the capacity was observed in subsequent cycles and a retention of almost 88% could be achieved in 150 cycles. The interfacial resistance before and after the electrochemical cycling was observed as 326 Ω and 13 kΩ, respectively which is also supported by the microstructural investigations where the cracks are observed because of thermochemical reactions.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Energy StoragePub Date : 2024-08-05DOI: 10.1002/est2.70011
Vikram Kishore Bharti, Tim Dawsey, Ram K. Gupta
{"title":"Carbon-Based Cathode Design for Next-Generation Potassium-Sulfur Batteries: Status and Perspective","authors":"Vikram Kishore Bharti, Tim Dawsey, Ram K. Gupta","doi":"10.1002/est2.70011","DOIUrl":"https://doi.org/10.1002/est2.70011","url":null,"abstract":"<div>\u0000 \u0000 <p>The increasing concern for environmental pollution has fastened the development of energy storage devices. Among various devices, lithium-ion battery (LIB) technology has been leapfrogged owing to its stable performance for various applications ranging from electronic gadgets to electric vehicles (EVs). For ever-increasing number of EVs has increased the demand for batteries increasing the overall cost. An alternative energy storage device that can replace the dependence on lithium reserves can be another game changer in this area. Potassium-sulfur batteries (KSBs) have attracted enormous attention owing to the higher abundance of sulfur and potassium. In addition, sulfur bears the highest capacity as a cathodic material (nearly five times higher than the commercial LIBs) and when clubbed with potassium anode can deliver a theoretical energy density of 914 Wh/kg (significantly higher for EVs). However, KSB development is still in the nascent stage owing to the intrinsic challenges including insulating sulfur, volume variation, and shuttle effect of polysulfides. In addition, unstable potassium anode and its dendrite formation is another thorny problem for KSB. The use of carbon matrices for cathode fabrication has been proven to be an excellent choice by initial research on KSB and experience with other metal-sulfur batteries. This can be related to the higher electronic conductivity of carbon, easy tunability, high specific surface area, and porous morphology. This review is an attempt to show the usage of carbon as a sulfur host for KSBs and its performance. Further, we shed light on flexible and binder-free carbon electrodes for the development of KSBs, which can be adopted to develop flexible batteries to be used in wearable devices. Finally, we present our perspective for developing a high-performance carbon-based cathode material for developing a reliable and long-cycle life KSB.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synergistic integration of nickel, porous silicon, and thermally reduced graphene oxide for solid-state hydrogen energy storage","authors":"Rama Chandra Muduli, Neeraj Kumar Nishad, Dinesh Dashbabu, Anil Kumar Emadabathuni, Paresh Kale","doi":"10.1002/est2.70008","DOIUrl":"https://doi.org/10.1002/est2.70008","url":null,"abstract":"<p>Solid-state hydrogen storage using metal hydrides offers the potential for high energy storage capacities. However, the requirement for high-temperature operations (above 400°C) and challenges with heat exchange are significant drawbacks. From this perspective, adsorption on porous materials presents a viable solution to these challenges. Carbon nanostructures, such as graphene and graphene oxide (GO) derivatives, are well-suited for hydrogen storage because of their lightweight nature, low density, and large surface area. However, the primary obstacle for practical applications is the poor storage capacity of carbon nanostructures under ambient conditions. Utilizing a cost-effective transition element such as nickel as a catalyst offers significant potential for storing hydrogen in atomic and molecular forms by invoking the spillover mechanism. Thermally reduced graphene oxide (TrGO) modifies the surface, providing abundant active sites that attract hydrogen effectively. Porous silicon (PS) enhances the surface properties of graphene sheets, attracting hydrogen to the surface. The current study assesses a synthesized TrGO, PS, and Ni composition to leverage their individual properties for hydrogen storage. Field-emission scanning electron microscopy examines the sheet structure of TrGO (used as the host material) and the incorporation of PS and Ni on its surface. The calculated specific surface area of TrGO is ~450 m<sup>2</sup> g<sup>−1</sup>. X-ray diffraction is used to identify the various phases in the composition, while Raman spectroscopy measures the degree of disorder within the composition. The pressure-composition isotherms reveal hydrogen storage capacities of ~6.53 wt% for the TrGO + PS composition and ~2.43 wt% for the TrGO + PS + Ni composition. Despite the decrease in weight percentage of TrGO + PS + Ni due to the higher Ni content, dissociation enhances the adsorption rate from 0.35 to 0.53 wt% h<sup>−1</sup>.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A simulation approach in analyzing performance of fly ash nanofluid for optimizing battery thermal management system used in EVs","authors":"Prajwal Thorat, Sudarshan Sanap, Shashank Gawade, Sateesh Patil","doi":"10.1002/est2.70005","DOIUrl":"https://doi.org/10.1002/est2.70005","url":null,"abstract":"<p>Electric vehicles (EVs) are a fundamental paradigm shift in the automotive industry, driven by the desire to achieve sustainable mobility, ameliorate climate change, and cut greenhouse gas emissions. Electric vehicle (EV) technology has advanced significantly in recent years, with improvements in battery efficiency, range, and charging infrastructure among them. Lithium-ion battery technology has evolved tremendously, boosting energy density and cutting costs as the primary energy storage option for electric vehicles. The advancement of fast-charging stations and smart grid integration, which have significantly resolved concerns with convenience and charging time, has also fostered a wider acceptance of EVs. Nonetheless, the operating temperature range of the lithium-ion cells currently in use is 15°C-35°C. The vehicle's range and battery performance can be impacted by temperatures above or below. For efficient cooling and to keep the cells within the operational temperature range, a suitable Battery Thermal Management System (BTMS) must be implemented. The utilization of fly ash nanoparticles dispersed in water-ethylene glycol base fluid as coolant in indirect liquid cooling systems is the main topic of the current work. For 14 LFP cylindrical cells with a 2S7P configuration and a serpentine cooling channel between the cells, an ANSYS FLUENT model has been created. The goal of the current study is to comprehend the rise in temperature at the outlet for various flow velocities by using fly ash nanofluid with 5% particle concentration as cooling. When the fluid flow rate was 0.1 m/s, the cooling performance was better, resulting in an outlet temperature rise of 311.976 K and a 4% temperature rise above the 300 K inlet fluid flow temperature. Indicating efficient cooling at lower fluid flow velocities, the percentage difference between the rise in temperature of the fluid's outflow at 0.1 and 3 m/s is 3.07%. Compared to the current coolant, ethylene glycol, the average increase in temperature difference (∆<i>T</i>)% is between 0.9% and 1.2% using fly ash nanofluid. Thus, the use of Fly ash as a nanofluid in battery cooling applications will certainly help to reduce the temperature of the battery pack and can provide a sustainable solution leading to lesser degradation of the environment.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Energy StoragePub Date : 2024-08-01DOI: 10.1002/est2.70009
K.A.U. Madhushani, A.A.P.R. Perera, Wang Lin, Jolaikha Sultana, Sanjay R. Mishra, Felio Perez, Ram K. Gupta
{"title":"High-performance supercapacitors using nanostructured polyaniline-based carbon: Effect of electrolytes","authors":"K.A.U. Madhushani, A.A.P.R. Perera, Wang Lin, Jolaikha Sultana, Sanjay R. Mishra, Felio Perez, Ram K. Gupta","doi":"10.1002/est2.70009","DOIUrl":"https://doi.org/10.1002/est2.70009","url":null,"abstract":"<p>Developing high-performance materials for electrochemical energy storage devices such as batteries, and supercapacitors is a significant topic in material chemistry-based research. The high consumption and limited availability of numerous materials used in energy devices lead to the development of alternative, effective, and cost-effective materials exhibiting superior electrochemical chemical performance. A porous activated carbon, derived from polyaniline (PANI) synthesized through chemical oxidative polymerization, can be considered a viable solution in this context. In this study, the electrochemical window of the nitrogen-doped porous activated carbon was enhanced through a combined synthesis process involving the carbonization and activation of PANI nanotubes with KOH. Moreover, alternations in surface area and porosity were evaluated using BET analysis for the samples having PANI to KOH ratios 1:0.5, 1:1, and 1:2. The results revealed a significant improvement in surface area and pore volume, increasing from 18 to 3535 m<sup>2</sup>/g from pure PANI to chemically treated samples. Among those materials, the PANI to KOH ratio of 1:1 exhibited the highest surface area of 3535 m<sup>2</sup>/g and the highest pore volume of 0.7131 cm<sup>3</sup>/g. Subsequently, the electrochemical performance of all materials was evaluated using a three-electrode cell system and a symmetrical coin-cell device. Electrodes fabricated with PANI to KOH ratio of 1:1 by weight showed better electrochemical performance in an aqueous electrolyte (6 M KOH) in both systems. This material exhibited the highest capacitance of 378 F/g (at 0.5 A/g) in the three-electrode system and 143 F/g (at 0.5 A/g) in the SCCD. The SCCD achieved a maximum energy density of 23 Wh/kg with a power density of 544 W/kg. Additionally, these supercapacitors provided a good Coulombic efficiency of about 99% with capacitance retention of 97% at 7 A/g current density after 10 000 charge–discharge cycles. Further, this study expanded by investigating variations of electrochemical performance across various electrolytes, including aqueous, organic, and ionic liquids in coin-cell supercapacitors. The findings reveal promising results, suggesting potential commercial applications for this facile approach to synthesize nitrogen-doped activated carbon, especially for supercapacitors with aqueous electrolytes.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estimation of hybrid energy generation of solar-wind tower for electric vehicle charging: A case study of Indian highway","authors":"Samarendra Pratap Singh, Prabhakar Tiwari, S.N. Singh, Praveen Prakash Singh","doi":"10.1002/est2.70004","DOIUrl":"https://doi.org/10.1002/est2.70004","url":null,"abstract":"<p>Advances in non-conventional energy technologies and increasing fossil fuel prices along with environmental concerns have made hybrid renewable energy systems important. In view of this scenario, solar panel mounted on a vertical axis wind turbine (called as solar-wind tower) can be utilized to produce more electric energy than individual one. This solar-wind tower will be located in the space available between two opposite roads of expressways/highways. Solar-wind tower located in such a manner that the air velocity produced from driving vehicles on both sides of the road is adequate to cut the turbine blades which will produce unidirectional torque. A battery energy storage system (BESS) stores the power produced by the solar-wind tower so that it can subsequently be used for local loads and electric vehicle charging stations (EVCS) and remaining energy can be supplied to the grid. In this work, a hybrid system composed of wind and solar is designed and modelled in Simulink (MATLAB) and tested on real data of wind speed and validated by Opal-RT simulator. From the simulation result, it is estimated that total electrical power output of a single solar-wind tower is around 15 to 20 kWh in a day under the assumed conditions.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}