{"title":"Synthesis of Mn-P-Na Based Nanocrystallite Composites and Investigation of Their Thermal Behavior Towards Heat Storage and Dissipation Applications","authors":"Rudrarapu Aravind, Akash Kumar Sahu, Naga Lakshmi Pavuluri, Gouri Sankhar Brahma, Sandip S. Deshmukh","doi":"10.1002/est2.70106","DOIUrl":"https://doi.org/10.1002/est2.70106","url":null,"abstract":"<div>\u0000 \u0000 <p>In this study, we report the synthesis, characterization, and thermal behavior of sodium hydroxide based two manganese-phosphate nanocrystallite composites, MnPNa<sub>1</sub> = Mn<sub>2</sub>(PO<sub>4</sub>)OH. 0.2H<sub>3</sub>PO<sub>4</sub>. 0.1NaOH.H<sub>2</sub>O (calcined) and MnPNa<sub>2</sub> = Mn<sub>2</sub>(PO<sub>4</sub>)OH. 2H<sub>2</sub>O. 0.8H<sub>3</sub>PO<sub>4</sub>. 0.1NaOH. H<sub>2</sub>O (non-calcined), and the molecular weights of the composites are estimated to be 247.40 and 360.20 g/mol, respectively. Comprehensive characterization was carried out, which includes elemental analysis, X-ray powder diffraction, thermogravimetric analysis, derivative thermogravimetry, Fourier Transform Infrared (FT-IR) Spectrometry, and scanning electron microscopy. Confirmation of the different functional groups within the composites was done through FT-IR analysis. Differential scanning calorimetry analyses revealed distinct thermal behaviors: MnPNa<sub>1</sub> exhibited consistent exothermic properties, making it suitable as a heat dissipation material (HDM) with high stability across a broad temperature range. In contrast, MnPNa<sub>2</sub> displayed a high specific heat capacity (Cp) of 1.23 J/g·K, highlighting its potential as a sensible heat storage material. The crystallinity of MnPNa<sub>1</sub> (89.83%) further supports its stability and application in heat dissipation technologies, while MnPNa<sub>2</sub>'s smaller crystallite size enhances its surface interactions for efficient heat storage. The crystallite sizes of MnPNa<sub>1</sub> and MnPNa<sub>2</sub> are found to be 25.5 and 18.8 nm, respectively.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143113738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Energy StoragePub Date : 2025-01-09DOI: 10.1002/est2.70111
Enes Furkan Örs, Nader Javani
{"title":"Machine Learning for Predicting Thermal Runaway in Lithium-Ion Batteries With External Heat and Force","authors":"Enes Furkan Örs, Nader Javani","doi":"10.1002/est2.70111","DOIUrl":"https://doi.org/10.1002/est2.70111","url":null,"abstract":"<div>\u0000 \u0000 <p>The current study aims to predict the thermal runaway in lithium-ion batteries using five artificial intelligence algorithms, considering the environmental factors and various design parameters. Multiple linear regression, k-nearest neighbors, decision tree, and random forest are used as machine learning algorithms, while artificial neural networks are used as deep learning algorithms. Nineteen experimental datasets are used to train the models. First, Pearson's correlation matrix is used to investigate the effects of input parameters on the thermal runaway onset time. The dataset is then updated to include only tests with thermal runaway produced by an external heat source. As a result of comparison among model performance prediction, it is determined that the decision tree model is the best-performing model with a coefficient of determination (R<sup>2</sup>) score of 0.9881, followed by random forest, k-nearest neighbors, artificial neural networks, and multiple linear regression models. The dataset is modified when the thermal runaway is triggered by external heating and compression forces. Results show that in this case, the performance of the decision tree model has an R<sup>2</sup> of 0.9742. Finally, the force range in which the model has the best performance is predicted, which is helpful in conducting tests to obtain reliable results.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143113466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Autonomous Power Sources for Electric Vehicles and Their Charging Infrastructure","authors":"Shchasiana Arhun, Andrii Hnatov, Pavlo Sokhin, Nadezda Kunicina","doi":"10.1002/est2.70121","DOIUrl":"https://doi.org/10.1002/est2.70121","url":null,"abstract":"<div>\u0000 \u0000 <p>The development and integration of autonomous power sources (APSs) for electric vehicle (EV) charging infrastructure are essential for reducing dependency on centralized power grids and advancing sustainable transportation. This study presents a novel APS model that integrates hybrid inverters, photovoltaic (PV) panels, and battery storage to create a reliable, cost-effective, and environmentally friendly EV charging solution. The proposed system achieves a 30% increase in charging efficiency compared to traditional grid-dependent models. Furthermore, the APS model reduces operational costs by 40%–60% for EV fleet operators and demonstrates a potential CO₂ emissions reduction of 70%–90% by relying on renewable solar energy. The results highlight the APS's adaptability across various environmental conditions, making it suitable for deployment in both urban and remote areas. This work contributes to the field by providing a scalable and sustainable approach to EV charging that supports green urban infrastructure and promotes resilience in energy supply.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143113482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Energy StoragePub Date : 2025-01-06DOI: 10.1002/est2.70115
A. S. Athul, Aswin V. Muthachikavil, Venkata Sudheendra Buddhiraju, Karundev Premraj, Venkataramana Runkana
{"title":"Identification of Stable Intermetallic Compounds for Hydrogen Storage via Machine Learning","authors":"A. S. Athul, Aswin V. Muthachikavil, Venkata Sudheendra Buddhiraju, Karundev Premraj, Venkataramana Runkana","doi":"10.1002/est2.70115","DOIUrl":"https://doi.org/10.1002/est2.70115","url":null,"abstract":"<div>\u0000 \u0000 <p>Hydrogen is one of the most promising alternatives to fossil fuels for energy as it is abundant, clean and efficient. Storage and transportation of hydrogen are two key challenges faced in utilizing it as a fuel. Storing H<sub>2</sub> in the form of metal hydrides is safe and cost effective when compared to its compression and liquefaction. Metal hydrides leverage the ability of metals to absorb H<sub>2</sub> and the stored H<sub>2</sub> can be released from the hydride by applying heat when needed. A multi-step methodology is proposed to identify intermetallic compounds that are thermodynamically stable and have high hydrogen storage capacity (HSC). It combines compound generation, thermodynamic stability analysis, prediction of properties of the metal hydride and ranking of discovered materials based on predicted properties. The US Department of Energy (DoE) Hydrogen Storage Materials Database and the Open Quantum Materials Database (OQMD) are utilized for building and testing machine learning (ML) models for enthalpy of formation of the intermetallic compounds, stability analysis, and enthalpy of formation, equilibrium pressure and HSC of metal hydrides. The models proposed here require only attributes of elements involved and compositional information as inputs and do no need any experimental data. Random forest algorithm was found to be the most accurate amongst the ML algorithms explored for predicting all the properties of interest. A total of 349 772 hypothetical intermetallic compounds were generated initially, out of which, only 8568 compounds were found to be stable. The highest predicted HSC of these stable compounds was found to be 3.6. Magnesium, Lithium and Germanium constitute majority of the high HSC compounds. The predictions of HSC using the present models for metal hydrides that are not in the DoE database were reasonably close to the experimental data published recently but there is scope for improvement in prediction accuracy for metal hydrides with high HSC. The findings of this study will be useful in reducing the time required for development and discovery of new hydrogen storage materials and can be used to check the practical applicability of the hydride compound using the predicted properties.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Energy StoragePub Date : 2025-01-06DOI: 10.1002/est2.70108
Shweta S. Suryavanshi, P. M. Ghanegaonkar
{"title":"Improving Electric Vehicle Air-Cooled Cylindrical Battery Temperature Control Systems: A Computational Fluid Dynamics (CFD) Study of an Innovative Uniform Flow Distribution Plate","authors":"Shweta S. Suryavanshi, P. M. Ghanegaonkar","doi":"10.1002/est2.70108","DOIUrl":"https://doi.org/10.1002/est2.70108","url":null,"abstract":"<div>\u0000 \u0000 <p>Temperature significantly affects the operation of lithium-ion batteries in electric vehicles (EVs). A battery temperature management system (BTMS) is necessary for battery safety and extended lifespan. This study proposes an innovative flow circulation technique to achieve uniform airflow distribution throughout the 26 650 cylindrical cells arranged in a 5P5S configuration. The 3D models of nine aluminum perforated plates with varying topologies have been developed to identify a more effective cooling method for rectangular battery packs. The CFD simulations examine the effects of air velocities, air inlet temperatures, C rate, and cell spacing (L) on the nine-plate structure. Optimal cooling is achieved with 2 mm cell spacing, evenly dispersing airflow and enhancing heat dissipation. An investigation has been conducted for various C rates. The best thermal performance is obtained at air speeds of 0.8 m/s for 0.5 C, 5 m/s for 1C, and 30 m/s for 2C. The outcome shows that altering the flow distribution layout is a practical way to improve the BP's cooling capacity.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance Analysis of Supercapacitors With Graphene and Graphyne Electrodes","authors":"Henrique de Araujo Chagas, Thaciana Malaspina, Eudes Eterno Fileti, Guilherme Colherinhas","doi":"10.1002/est2.70114","DOIUrl":"https://doi.org/10.1002/est2.70114","url":null,"abstract":"<div>\u0000 \u0000 <p>Graphene and graphyne electrodes exhibit considerable relevance in electrochemical energy storage applications owing to their distinct physical and chemical characteristics. Graphyne has garnered increased attention due to its larger specific surface area, enhanced electronic mobility, and intrinsic band gap compared to graphene. Our analyses unveil pertinent aspects of graphyne electrodes in interaction with ionic liquid (Emim-BF<sub>4</sub>) and aqueous salt (NaCl) solution based electrolytes. Despite the existing body of research on graphyne, there remains a gap in the comprehensive analysis of its performance as an electrode for supercapacitors and its interactions with electrolyte. In this investigation, molecular dynamics were employed to explore properties of graphene/graphyne electrodes based supercapacitors. The characteristics of the EDL are elucidated through structural and energetic analyses, while the capacitive performance of the devices is discussed in light of electrostatic properties, total capacitance, and storage energy density. Throughout the analysis, key differences and underlying similarities between the models are delineated.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Energy StoragePub Date : 2025-01-06DOI: 10.1002/est2.70107
Suneyana Rawat, Pramod K. Singh, M. Z. A. Yahya, S. N. F. Yusuf, Markus Diantoro, Famiza Abdul Latif, Ram Chandra Singh
{"title":"Polyethylene Oxide Incorporated Ammonium Iodide Doped With Ionic Liquid Trihexyl (Tetradecy) Phosphonium Dicyanamide-Based Polymer Electrolyte for Dual Energy Storage Devices","authors":"Suneyana Rawat, Pramod K. Singh, M. Z. A. Yahya, S. N. F. Yusuf, Markus Diantoro, Famiza Abdul Latif, Ram Chandra Singh","doi":"10.1002/est2.70107","DOIUrl":"https://doi.org/10.1002/est2.70107","url":null,"abstract":"<div>\u0000 \u0000 <p>Cation phosphonium-based ionic liquids (PBILs) have recently gained attention since the 2000s due to their thermal stability and low viscosity for better ionic conduction in electrochemical devices. This paper introduces a new low-viscosity phosphonium-based ionic liquids (PBILs)—trihexyl (tetradecy) phosphonium dicyanamide—infused in polyethylene oxide: ammonium iodide (NH<sub>4</sub>I) complex polymer electrolyte. The electrochemical impedance spectroscopy studies indicate that the ionic conductivity reaches 2.03 × 10<sup>−4</sup> S/cm at 6 wt.% PBILs at ambient temperature. The PBILs-doped polymer electrolyte is predominantly ionic confirm by ionic transference numbers (t<sub>ion</sub>) calculation. Also the electrochemical stability window was found to be 3.2 V suitable for energy storage devices. The highest achieve ionic conductivity PBILs-doped polymer electrolyte sandwich between the electrodes for dual energy devices like electric double layer capacitors (EDLCs) and dye-sensitized solar cells (DSSCs). This study shows improvements in ionic conduction, double-layer stability, and light-harvesting efficiency, resulting in higher energy density and power density in EDLCs and better photovoltaic performance in DSSCs. These findings highlight the versatility and efficacy of phosphonium-based ionic liquid-doped polymer electrolytes for advanced energy storage and conversion applications.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Energy StoragePub Date : 2025-01-06DOI: 10.1002/est2.70100
Apoorva Rai, Prashant Tripathi, P. Kumar, Kedar Singh, H. S. Tewari, Jai Singh
{"title":"Exploring the Potential of Lanthanum-Doped ZnFe2O4 Nanomaterials as Electrode Materials for Next-Generation Supercapacitors","authors":"Apoorva Rai, Prashant Tripathi, P. Kumar, Kedar Singh, H. S. Tewari, Jai Singh","doi":"10.1002/est2.70100","DOIUrl":"https://doi.org/10.1002/est2.70100","url":null,"abstract":"<div>\u0000 \u0000 <p>In this study, we synthesized ZnFe<sub>2-<i>x</i></sub>La<sub><i>x</i></sub>O<sub>4</sub> nanoparticles with varying lanthanum (La) content (<i>x</i> = 0, 0.01, 0.03, 0.05) via a cost-effective combustion method utilizing citric acid as a fuel. This method was selected for its cost-effectiveness and its capability to produce high-quality nanoparticles with tailored properties. X-ray diffraction (XRD) analysis confirmed the cubic structure of the synthesized ZnFe<sub>2</sub>O<sub>4</sub> product, revealing planes (220), (311), (400), (511), and (440) within the Fd-3m space group, with no additional peaks observed, indicating phase purity. The study proceeded to calculate essential parameters including lattice parameter, particle size, and strain, utilizing the Williamson–Hall method, offering important insights into the structural features and behaviors of synthesized nanoparticles. The crystallite size and surface morphology were investigated by TEM analysis. Additionally, Raman spectroscopy revealed five distinct Raman-active modes (A1g + Eg + 3F2g), consistent with the spinel structure. The electrochemical properties of the electrodes were assessed using a three-electrode system in a 2 M KOH electrolyte, employing cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). At a scan rate of 2 mV/s, a specific capacitance of 109.58 F/g was achieved with the nanomaterial synthesized via the combustion technique.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Energy StoragePub Date : 2025-01-06DOI: 10.1002/est2.70119
Shiv Saurabh, Adesh Kumar, Roushan Kumar
{"title":"Techno Economic Analysis of Grid Connected Photovoltaic Systems With Battery Energy Storage: A Comprehensive Review","authors":"Shiv Saurabh, Adesh Kumar, Roushan Kumar","doi":"10.1002/est2.70119","DOIUrl":"https://doi.org/10.1002/est2.70119","url":null,"abstract":"<div>\u0000 \u0000 <p>The usage of solar photovoltaic (PV) systems for power generation has significantly increased due to the global demand for sustainable and clean energy sources. When combined with Battery Energy Storage Systems (BESS) and grid loads, photovoltaic (PV) systems offer an efficient way of optimizing energy use, lowering electricity expenses, and improving grid resilience. The study highlights the environmental and economic advantages, such as reduced carbon emissions, lower energy expenses, and job creation, while facilitating grid modernization through bi-directional power flow and enhanced energy management. The findings demonstrate the evolution towards a sustainable energy future by analyzing the incorporation of photovoltaic systems and battery energy storage systems, investigating standards for the secure and efficient integration of grid-connected solar photovoltaic systems, and evaluating the environmental and techno-economic implications of these systems. The techno-economic analysis, encompassing estimates of payback period, return on investment, and net present value, is utilized to evaluate the economic feasibility of the integrated system. The findings from this research aim to aid consumers, businesses, utilities, and legislators in making informed decisions that optimize solar energy advantages, diminish grid reliance, and alleviate environmental consequences.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Energy StoragePub Date : 2025-01-06DOI: 10.1002/est2.70112
Mosin Khan, Ritu Raj, Mange Ram, Anju Rani, Krishna Kanta Haldar
{"title":"Zn3(PO4)2·4H2O/TiO2 Structure for Superior Oxygen Evolution Reaction and Energy Storage Applications","authors":"Mosin Khan, Ritu Raj, Mange Ram, Anju Rani, Krishna Kanta Haldar","doi":"10.1002/est2.70112","DOIUrl":"https://doi.org/10.1002/est2.70112","url":null,"abstract":"<div>\u0000 \u0000 <p>In this study, we present the synthesis and characterization of a high-performance Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>·4H₂O/TiO<sub>2</sub> nanocomposite, designed as a versatile electrocatalyst for advanced energy storage and conversion applications. The synthesis of the Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>·4H₂O/TiO<sub>2</sub> nanocomposite was confirmed using various sophisticated analytical techniques such as powder x-ray diffraction, FTIR, UV spectroscopy, FESEM imaging, EDX, and XPS etc. Notably, the nanocomposite demonstrates exceptional performance in the oxygen evolution reaction (OER), with a low overpotential of 250 mV at a current density of 50 mV/cm<sup>2</sup> and a Tafel slope of 129 mV/dec, indicating superior kinetics. Furthermore, it demonstrates a specific capacitance of 112 F/g at a scan rate of 20 mV/s and remarkable cyclic stability, retaining 91% capacitance over 1000 cycles in supercapacitor applications. Additionally, in a practical application, the nanocomposite successfully powered a red light-emitting diode (LED) for 11 min. The combined effect of Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>·4H₂O<sub>2</sub> and TiO<sub>2</sub> contributes to its outstanding electrochemical properties. This makes it a promising candidate for sustainable energy solutions, with the potential to enhance the efficiency and durability of energy storage and conversion systems.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}