Energy Storage最新文献

筛选
英文 中文
Carbon-Based Cathode Design for Next-Generation Potassium-Sulfur Batteries: Status and Perspective 下一代钾硫电池的碳基阴极设计:现状与展望
Energy Storage Pub Date : 2024-08-05 DOI: 10.1002/est2.70011
Vikram Kishore Bharti, Tim Dawsey, Ram K. Gupta
{"title":"Carbon-Based Cathode Design for Next-Generation Potassium-Sulfur Batteries: Status and Perspective","authors":"Vikram Kishore Bharti,&nbsp;Tim Dawsey,&nbsp;Ram K. Gupta","doi":"10.1002/est2.70011","DOIUrl":"https://doi.org/10.1002/est2.70011","url":null,"abstract":"<div>\u0000 \u0000 <p>The increasing concern for environmental pollution has fastened the development of energy storage devices. Among various devices, lithium-ion battery (LIB) technology has been leapfrogged owing to its stable performance for various applications ranging from electronic gadgets to electric vehicles (EVs). For ever-increasing number of EVs has increased the demand for batteries increasing the overall cost. An alternative energy storage device that can replace the dependence on lithium reserves can be another game changer in this area. Potassium-sulfur batteries (KSBs) have attracted enormous attention owing to the higher abundance of sulfur and potassium. In addition, sulfur bears the highest capacity as a cathodic material (nearly five times higher than the commercial LIBs) and when clubbed with potassium anode can deliver a theoretical energy density of 914 Wh/kg (significantly higher for EVs). However, KSB development is still in the nascent stage owing to the intrinsic challenges including insulating sulfur, volume variation, and shuttle effect of polysulfides. In addition, unstable potassium anode and its dendrite formation is another thorny problem for KSB. The use of carbon matrices for cathode fabrication has been proven to be an excellent choice by initial research on KSB and experience with other metal-sulfur batteries. This can be related to the higher electronic conductivity of carbon, easy tunability, high specific surface area, and porous morphology. This review is an attempt to show the usage of carbon as a sulfur host for KSBs and its performance. Further, we shed light on flexible and binder-free carbon electrodes for the development of KSBs, which can be adopted to develop flexible batteries to be used in wearable devices. Finally, we present our perspective for developing a high-performance carbon-based cathode material for developing a reliable and long-cycle life KSB.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic integration of nickel, porous silicon, and thermally reduced graphene oxide for solid-state hydrogen energy storage 镍、多孔硅和热还原氧化石墨烯的协同集成用于固态氢能存储
Energy Storage Pub Date : 2024-08-01 DOI: 10.1002/est2.70008
Rama Chandra Muduli, Neeraj Kumar Nishad, Dinesh Dashbabu, Anil Kumar Emadabathuni, Paresh Kale
{"title":"Synergistic integration of nickel, porous silicon, and thermally reduced graphene oxide for solid-state hydrogen energy storage","authors":"Rama Chandra Muduli,&nbsp;Neeraj Kumar Nishad,&nbsp;Dinesh Dashbabu,&nbsp;Anil Kumar Emadabathuni,&nbsp;Paresh Kale","doi":"10.1002/est2.70008","DOIUrl":"https://doi.org/10.1002/est2.70008","url":null,"abstract":"<p>Solid-state hydrogen storage using metal hydrides offers the potential for high energy storage capacities. However, the requirement for high-temperature operations (above 400°C) and challenges with heat exchange are significant drawbacks. From this perspective, adsorption on porous materials presents a viable solution to these challenges. Carbon nanostructures, such as graphene and graphene oxide (GO) derivatives, are well-suited for hydrogen storage because of their lightweight nature, low density, and large surface area. However, the primary obstacle for practical applications is the poor storage capacity of carbon nanostructures under ambient conditions. Utilizing a cost-effective transition element such as nickel as a catalyst offers significant potential for storing hydrogen in atomic and molecular forms by invoking the spillover mechanism. Thermally reduced graphene oxide (TrGO) modifies the surface, providing abundant active sites that attract hydrogen effectively. Porous silicon (PS) enhances the surface properties of graphene sheets, attracting hydrogen to the surface. The current study assesses a synthesized TrGO, PS, and Ni composition to leverage their individual properties for hydrogen storage. Field-emission scanning electron microscopy examines the sheet structure of TrGO (used as the host material) and the incorporation of PS and Ni on its surface. The calculated specific surface area of TrGO is ~450 m<sup>2</sup> g<sup>−1</sup>. X-ray diffraction is used to identify the various phases in the composition, while Raman spectroscopy measures the degree of disorder within the composition. The pressure-composition isotherms reveal hydrogen storage capacities of ~6.53 wt% for the TrGO + PS composition and ~2.43 wt% for the TrGO + PS + Ni composition. Despite the decrease in weight percentage of TrGO + PS + Ni due to the higher Ni content, dissociation enhances the adsorption rate from 0.35 to 0.53 wt% h<sup>−1</sup>.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simulation approach in analyzing performance of fly ash nanofluid for optimizing battery thermal management system used in EVs 分析粉煤灰纳米流体性能以优化电动汽车电池热管理系统的模拟方法
Energy Storage Pub Date : 2024-08-01 DOI: 10.1002/est2.70005
Prajwal Thorat, Sudarshan Sanap, Shashank Gawade, Sateesh Patil
{"title":"A simulation approach in analyzing performance of fly ash nanofluid for optimizing battery thermal management system used in EVs","authors":"Prajwal Thorat,&nbsp;Sudarshan Sanap,&nbsp;Shashank Gawade,&nbsp;Sateesh Patil","doi":"10.1002/est2.70005","DOIUrl":"https://doi.org/10.1002/est2.70005","url":null,"abstract":"<p>Electric vehicles (EVs) are a fundamental paradigm shift in the automotive industry, driven by the desire to achieve sustainable mobility, ameliorate climate change, and cut greenhouse gas emissions. Electric vehicle (EV) technology has advanced significantly in recent years, with improvements in battery efficiency, range, and charging infrastructure among them. Lithium-ion battery technology has evolved tremendously, boosting energy density and cutting costs as the primary energy storage option for electric vehicles. The advancement of fast-charging stations and smart grid integration, which have significantly resolved concerns with convenience and charging time, has also fostered a wider acceptance of EVs. Nonetheless, the operating temperature range of the lithium-ion cells currently in use is 15°C-35°C. The vehicle's range and battery performance can be impacted by temperatures above or below. For efficient cooling and to keep the cells within the operational temperature range, a suitable Battery Thermal Management System (BTMS) must be implemented. The utilization of fly ash nanoparticles dispersed in water-ethylene glycol base fluid as coolant in indirect liquid cooling systems is the main topic of the current work. For 14 LFP cylindrical cells with a 2S7P configuration and a serpentine cooling channel between the cells, an ANSYS FLUENT model has been created. The goal of the current study is to comprehend the rise in temperature at the outlet for various flow velocities by using fly ash nanofluid with 5% particle concentration as cooling. When the fluid flow rate was 0.1 m/s, the cooling performance was better, resulting in an outlet temperature rise of 311.976 K and a 4% temperature rise above the 300 K inlet fluid flow temperature. Indicating efficient cooling at lower fluid flow velocities, the percentage difference between the rise in temperature of the fluid's outflow at 0.1 and 3 m/s is 3.07%. Compared to the current coolant, ethylene glycol, the average increase in temperature difference (∆<i>T</i>)% is between 0.9% and 1.2% using fly ash nanofluid. Thus, the use of Fly ash as a nanofluid in battery cooling applications will certainly help to reduce the temperature of the battery pack and can provide a sustainable solution leading to lesser degradation of the environment.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-performance supercapacitors using nanostructured polyaniline-based carbon: Effect of electrolytes 使用纳米聚苯胺基碳的高性能超级电容器:电解质的影响
Energy Storage Pub Date : 2024-08-01 DOI: 10.1002/est2.70009
K.A.U. Madhushani, A.A.P.R. Perera, Wang Lin, Jolaikha Sultana, Sanjay R. Mishra, Felio Perez, Ram K. Gupta
{"title":"High-performance supercapacitors using nanostructured polyaniline-based carbon: Effect of electrolytes","authors":"K.A.U. Madhushani,&nbsp;A.A.P.R. Perera,&nbsp;Wang Lin,&nbsp;Jolaikha Sultana,&nbsp;Sanjay R. Mishra,&nbsp;Felio Perez,&nbsp;Ram K. Gupta","doi":"10.1002/est2.70009","DOIUrl":"https://doi.org/10.1002/est2.70009","url":null,"abstract":"<p>Developing high-performance materials for electrochemical energy storage devices such as batteries, and supercapacitors is a significant topic in material chemistry-based research. The high consumption and limited availability of numerous materials used in energy devices lead to the development of alternative, effective, and cost-effective materials exhibiting superior electrochemical chemical performance. A porous activated carbon, derived from polyaniline (PANI) synthesized through chemical oxidative polymerization, can be considered a viable solution in this context. In this study, the electrochemical window of the nitrogen-doped porous activated carbon was enhanced through a combined synthesis process involving the carbonization and activation of PANI nanotubes with KOH. Moreover, alternations in surface area and porosity were evaluated using BET analysis for the samples having PANI to KOH ratios 1:0.5, 1:1, and 1:2. The results revealed a significant improvement in surface area and pore volume, increasing from 18 to 3535 m<sup>2</sup>/g from pure PANI to chemically treated samples. Among those materials, the PANI to KOH ratio of 1:1 exhibited the highest surface area of 3535 m<sup>2</sup>/g and the highest pore volume of 0.7131 cm<sup>3</sup>/g. Subsequently, the electrochemical performance of all materials was evaluated using a three-electrode cell system and a symmetrical coin-cell device. Electrodes fabricated with PANI to KOH ratio of 1:1 by weight showed better electrochemical performance in an aqueous electrolyte (6 M KOH) in both systems. This material exhibited the highest capacitance of 378 F/g (at 0.5 A/g) in the three-electrode system and 143 F/g (at 0.5 A/g) in the SCCD. The SCCD achieved a maximum energy density of 23 Wh/kg with a power density of 544 W/kg. Additionally, these supercapacitors provided a good Coulombic efficiency of about 99% with capacitance retention of 97% at 7 A/g current density after 10 000 charge–discharge cycles. Further, this study expanded by investigating variations of electrochemical performance across various electrolytes, including aqueous, organic, and ionic liquids in coin-cell supercapacitors. The findings reveal promising results, suggesting potential commercial applications for this facile approach to synthesize nitrogen-doped activated carbon, especially for supercapacitors with aqueous electrolytes.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of hybrid energy generation of solar-wind tower for electric vehicle charging: A case study of Indian highway 用于电动汽车充电的太阳能-风能混合发电塔的估算:印度高速公路案例研究
Energy Storage Pub Date : 2024-08-01 DOI: 10.1002/est2.70004
Samarendra Pratap Singh, Prabhakar Tiwari, S.N. Singh, Praveen Prakash Singh
{"title":"Estimation of hybrid energy generation of solar-wind tower for electric vehicle charging: A case study of Indian highway","authors":"Samarendra Pratap Singh,&nbsp;Prabhakar Tiwari,&nbsp;S.N. Singh,&nbsp;Praveen Prakash Singh","doi":"10.1002/est2.70004","DOIUrl":"https://doi.org/10.1002/est2.70004","url":null,"abstract":"<p>Advances in non-conventional energy technologies and increasing fossil fuel prices along with environmental concerns have made hybrid renewable energy systems important. In view of this scenario, solar panel mounted on a vertical axis wind turbine (called as solar-wind tower) can be utilized to produce more electric energy than individual one. This solar-wind tower will be located in the space available between two opposite roads of expressways/highways. Solar-wind tower located in such a manner that the air velocity produced from driving vehicles on both sides of the road is adequate to cut the turbine blades which will produce unidirectional torque. A battery energy storage system (BESS) stores the power produced by the solar-wind tower so that it can subsequently be used for local loads and electric vehicle charging stations (EVCS) and remaining energy can be supplied to the grid. In this work, a hybrid system composed of wind and solar is designed and modelled in Simulink (MATLAB) and tested on real data of wind speed and validated by Opal-RT simulator. From the simulation result, it is estimated that total electrical power output of a single solar-wind tower is around 15 to 20 kWh in a day under the assumed conditions.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studies on supercapacitor electrode performance of novel (AlCuCoFeMnNi)3O4 high entropy spinel oxide admixed with different carbon-based additives 新型(AlCuCoFeMnNi)3O4 高熵尖晶石氧化物与不同碳基添加剂混合的超级电容器电极性能研究
Energy Storage Pub Date : 2024-07-18 DOI: 10.1002/est2.70002
Amit K. Gupta, Ankit Kumar, Mina Marndi, Neeraj K. Giri, Rohit R. Shahi
{"title":"Studies on supercapacitor electrode performance of novel (AlCuCoFeMnNi)3O4 high entropy spinel oxide admixed with different carbon-based additives","authors":"Amit K. Gupta,&nbsp;Ankit Kumar,&nbsp;Mina Marndi,&nbsp;Neeraj K. Giri,&nbsp;Rohit R. Shahi","doi":"10.1002/est2.70002","DOIUrl":"https://doi.org/10.1002/est2.70002","url":null,"abstract":"<p>The present investigation aims to synthesize a novel (AlCuCoFeMnNi)<sub>3</sub>O<sub>4</sub> type high entropy spinel oxide through the sol-gel and investigate the effect of different carbon-based additives on charge storage performance. The formation of the inverse spinel phase of [B(AB)O<sub>4</sub>] type inverse spinel phase was confirmed through the detailed x-ray diffraction analysis of the synthesized sample. The synthesized spinel phase was indexed with the space group of Fd−3m and has a lattice parameter of 8.2697 Å. The synthesized high entropy oxide (HEO) phase Ni, Co, and Fe coexists in +2 and +3 states. At the same time, Cu in +2 state, Al in +3 state, and Mn in +3 and +4 states confirmed through x-ray photoelectron spectroscopy. The electrochemical charge storage performance of synthesized HEO was measured through the three-electrode setup in 2 M KOH aqueous electrolyte solution in two different potential windows, such as −0.2 to 0.4 V and 0.0 to 0.5 V. Different carbon-based conducting materials such as acetylene black, reduced graphene oxide (RGO), and carbon particles obtained from 10-hour ball-milling of used dry cell carbon electrode (CP). The charge storage mechanism changes from electrochemical double layer capacitance to pseudocapacitive type as the potential window varies from −0.2 to 0.4 to 0 to 0.5 V. The value of specific capacitance for an electrode made of HEO with acetylene black, RGO, and CP was found to be 32.67, 7.50, and 4.58 F/g and 30.68, 16.33, and 9.05 F/g in the potential window of −0.2 to 0.4 V and 0 to 0.5 V at a scan rate of 5 mV/s, respectively. The cyclic performance of the developed three electrodes was measured at a scan rate of 100 mV/s for 1000 cycles, and it was found to be 94%, 98%, and 99% for electrodes made of HEO with acetylene black, RGO, and CP, respectively.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141639494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A synergy of Cr2O3 with eco-friendly and thermally stable CsSnCl3 perovskite for solar energy storage: Density functional theory and SCAPS-1D analysis 用于太阳能存储的 Cr2O3 与环保且热稳定的 CsSnCl3 包晶的协同作用:密度泛函理论和 SCAPS-1D 分析
Energy Storage Pub Date : 2024-07-15 DOI: 10.1002/est2.70001
Ankur Pandya, Atish Kumar Sharma, Misaree Bhatt, Prafulla K. Jha, Keyur Sangani, Nitesh K. Chourasia, Ritesh Kumar Chourasia
{"title":"A synergy of Cr2O3 with eco-friendly and thermally stable CsSnCl3 perovskite for solar energy storage: Density functional theory and SCAPS-1D analysis","authors":"Ankur Pandya,&nbsp;Atish Kumar Sharma,&nbsp;Misaree Bhatt,&nbsp;Prafulla K. Jha,&nbsp;Keyur Sangani,&nbsp;Nitesh K. Chourasia,&nbsp;Ritesh Kumar Chourasia","doi":"10.1002/est2.70001","DOIUrl":"https://doi.org/10.1002/est2.70001","url":null,"abstract":"<p>The present study employs rigorous DFT analysis using WIEN2k for the best suitability of the Cr<sub>2</sub>O<sub>3</sub> as an electron transport layer, synergetic with nontoxic and thermally stable CsSnCl<sub>3</sub> perovskite solar energy storage device, configured as FTO/Cr<sub>2</sub>O<sub>3</sub>/CsSnCl<sub>3</sub>/CBTS/Au. The main objective of our investigation is to improve the device performance by optimizing thickness, carrier concentration, bulk defect density of each layer, interface defects, operating temperature, as well as the impact of parasitic elements on device performance. SCAPS-1D tool was used to optimize the novel device architecture. The simulation results reveal that a CsSnCl<sub>3</sub> layer with an optimized thickness of 800 nm and a doping concentration of 1 × 10<sup>15</sup> cm<sup>−3</sup> yields noteworthy outcomes, specifically, champion efficiency (𝜂) of 22.01% along with an open-circuit voltage (<i>V</i><sub>oc</sub>) of 1.12 V, a short-circuit current (<i>J</i><sub>sc</sub>) of 23.86 mA/cm<sup>2</sup>, and a fill factor of 81.65%. These improved findings were compared with existing theoretical and experimental reported data and found to exhibit the best performance. The present research substantially enhances the understanding of eco-friendly CsSnCl<sub>3</sub> perovskite solar cell optimization, thereby extending its applicability to future photovoltaic and optoelectronic devices.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141624224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Charging control of lithium-ion battery and energy management system in electric vehicles 电动汽车中的锂离子电池充电控制和能量管理系统
Energy Storage Pub Date : 2024-07-14 DOI: 10.1002/est2.667
Mali Satya Naga Krishna Konijeti, Bharathi Murugan Lakshmi
{"title":"Charging control of lithium-ion battery and energy management system in electric vehicles","authors":"Mali Satya Naga Krishna Konijeti,&nbsp;Bharathi Murugan Lakshmi","doi":"10.1002/est2.667","DOIUrl":"https://doi.org/10.1002/est2.667","url":null,"abstract":"<p>In terms of electric vehicle architectures, the drivetrain offers unprecedented freedom, but it also creates new obstacles in terms of achieving all needs. The architecture of electric vehicles is simplified and adjustable at the component level because they don't have a combustion engine or fuel tank, only an electric motor and a battery. Implementing safe zones within electric vehicles (EVs) to accommodate battery packs necessitates significant adjustments to ensure the secure integration of the battery. A Battery EV, also known as a pure EV, solely relies on rechargeable battery packs as its source of energy, without any additional propulsion system. The Battery Management System (BMS) plays a significant role in maintaining the safety of electric vehicles by controlling the electronics of rechargeable batteries, whether they are individual cells or battery packs. The BMS plays crucial role in protecting both the user and the battery by monitoring and maintaining the cell's operation within safe limits. This research paper focuses on the control of solar-powered charging for lithium-ion batteries. An optimized FOPID controller is utilized to maximize power extraction from PV array and efficiently charge the battery. A hybrid optimization model is employed to optimize the gain parameters of the FOPID controller.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141624292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization method for capacity of BESS considering charge-discharge cycle and renewable energy penetration rate 考虑充放电循环和可再生能源渗透率的 BESS 容量优化方法
Energy Storage Pub Date : 2024-07-14 DOI: 10.1002/est2.70003
Yu Zhao, Zhongge Luo, Yi Zhang, Mengjing Wu, Li Wen, Gen Li
{"title":"Optimization method for capacity of BESS considering charge-discharge cycle and renewable energy penetration rate","authors":"Yu Zhao,&nbsp;Zhongge Luo,&nbsp;Yi Zhang,&nbsp;Mengjing Wu,&nbsp;Li Wen,&nbsp;Gen Li","doi":"10.1002/est2.70003","DOIUrl":"https://doi.org/10.1002/est2.70003","url":null,"abstract":"<p>In order to achieve the “carbon peaking and carbon neutrality” goals, we must vigorously develop renewable energy power generation. As the penetration of renewables progressively escalates, the corresponding demand for battery energy storage systems (BESS) within the power grid rises concomitantly. This paper presents an innovative optimization approach for configuring BESS, taking into account the incremental variations in renewable energy penetration levels and BESS charge-discharge cycles. Employing incremental analytical techniques and pivotal metrics such as capacity elasticity, the proposed method determines the optimal penetration rate and corresponding BESS capacity outcomes for deploying energy storage systems. An example analysis of a rural power distribution benchmark is carried out by using the method in this paper, which proves the effectiveness of the method in this paper. This methodology was substantiated through its application to a case study of a rural power distribution benchmark, thereby validating its efficacy. Furthermore, it was compared with the particle swarm optimization, providing a comparative assessment of their relative performance.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141624290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review of an electric vehicle based on the existing technologies and challenges 根据现有技术和挑战对电动汽车进行全面审查
Energy Storage Pub Date : 2024-07-14 DOI: 10.1002/est2.70000
Anil Kumar
{"title":"A comprehensive review of an electric vehicle based on the existing technologies and challenges","authors":"Anil Kumar","doi":"10.1002/est2.70000","DOIUrl":"https://doi.org/10.1002/est2.70000","url":null,"abstract":"<p>This article evaluates the growing prominence of electric vehicles (EVs) driven by factors like cost reduction and increased environmental awareness. It scrutinizes EV progress, focusing on battery technology advancements, charging methods, and emerging research prospects. It also delves into the global EV market status and its future potential. With batteries being a pivotal EV component, this article offers an extensive overview of various battery technologies, spanning from traditional Lead-acid to modern lithium-ion batteries. Furthermore, it explores diverse EV charging standards, emphasizing battery energy management, and underscores unexplored research opportunities for both industry and academia.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141624291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信