Comparative Investigation on Two-Dimensional Ti2CY2 (Y = O, S) MXene/Graphene Van der Waals Heterostructure as Potential Anode Material for Lithium-Ion Batteries: A First-Principles Calculation

Energy Storage Pub Date : 2025-04-22 DOI:10.1002/est2.70175
Lakshay Girdhar, Paramita Haldar
{"title":"Comparative Investigation on Two-Dimensional Ti2CY2 (Y = O, S) MXene/Graphene Van der Waals Heterostructure as Potential Anode Material for Lithium-Ion Batteries: A First-Principles Calculation","authors":"Lakshay Girdhar,&nbsp;Paramita Haldar","doi":"10.1002/est2.70175","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>With the increasing demand for high-performance energy storage devices, the demand for alternative anode materials with high energy density and operational voltage is becoming urgent. Two-dimensional van der Waals (vdW) heterostructures gained popularity due to their large surface area and adjustable interlayer spacing. In this work, we have employed first-principles calculations to compare the structural, electronic, adsorption, and electrochemical properties of O and S functionalized Ti<sub>2</sub>CY<sub>2</sub>/graphene (Y = O, S) vdW heterostructures. The optimized heterostructure formed by O and S functionalized MXene and graphene layers are separated by 3.04 and 3.40 Å, respectively, giving the binding energy per atom as −0.019 and −0.018 eV. It is found that the intercalation of lithium (Li) atoms in between the Ti<sub>2</sub>CY<sub>2</sub>/Graphene layers is thermodynamically more favorable in comparison with intercalation on the top or below the heterostructures. The Bader charge transfer analysis confirms that O atoms gain less charge −0.13 e during Li intercalation compared to S atoms with charge transfer of −0.47 e due to the larger size of the 3p orbital of S atoms. Each Li atom contributes ~0.88–0.89 e during the intercalation process. The diffusion energy barrier for lithium atom intercalation is lower for Ti<sub>2</sub>CS<sub>2</sub>/graphene (0.27, 0.22, 0.12, and 0.18 eV) than for Ti<sub>2</sub>CO<sub>2</sub>/graphene (0.45, 0.40, 0.34, and 0.28 eV) when + nLi, <i>n</i> = 1, 2, 3, and 17, respectively. The CI-NEB study also confirms that the activation energy barrier decreases with the increase of intercalated Li atoms for both the heterostructures, indicating that Li atoms exhibit weak repulsive interaction. The positive open-circuit voltage (OCV) of less than 2.20 V indicates that both the heterostructures are useful as anode materials. The theoretical specific capacity is 302.36 mAh/g for Ti<sub>2</sub>CO<sub>2</sub>/graphene and 255.97 mAh/g for Ti<sub>2</sub>CS<sub>2</sub>/graphene. Ab initio MD simulations reveal that the Li diffusion rate is 8.4 × 10<sup>−7</sup> and 8.5 × 10<sup>−7</sup> cm<sup>2</sup>/s for Ti<sub>2</sub>CO<sub>2</sub>/graphene and Ti<sub>2</sub>CS<sub>2</sub>/graphene. Therefore, both the Ti<sub>2</sub>CO<sub>2</sub>/graphene and Ti<sub>2</sub>CS<sub>2</sub>/graphene heterostructures can be considered promising anode materials for Li-ion batteries due to their structural stability, lower diffusion energy barrier, high Li diffusion rate, and positive calculated average voltage of less than 2.2 V.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing demand for high-performance energy storage devices, the demand for alternative anode materials with high energy density and operational voltage is becoming urgent. Two-dimensional van der Waals (vdW) heterostructures gained popularity due to their large surface area and adjustable interlayer spacing. In this work, we have employed first-principles calculations to compare the structural, electronic, adsorption, and electrochemical properties of O and S functionalized Ti2CY2/graphene (Y = O, S) vdW heterostructures. The optimized heterostructure formed by O and S functionalized MXene and graphene layers are separated by 3.04 and 3.40 Å, respectively, giving the binding energy per atom as −0.019 and −0.018 eV. It is found that the intercalation of lithium (Li) atoms in between the Ti2CY2/Graphene layers is thermodynamically more favorable in comparison with intercalation on the top or below the heterostructures. The Bader charge transfer analysis confirms that O atoms gain less charge −0.13 e during Li intercalation compared to S atoms with charge transfer of −0.47 e due to the larger size of the 3p orbital of S atoms. Each Li atom contributes ~0.88–0.89 e during the intercalation process. The diffusion energy barrier for lithium atom intercalation is lower for Ti2CS2/graphene (0.27, 0.22, 0.12, and 0.18 eV) than for Ti2CO2/graphene (0.45, 0.40, 0.34, and 0.28 eV) when + nLi, n = 1, 2, 3, and 17, respectively. The CI-NEB study also confirms that the activation energy barrier decreases with the increase of intercalated Li atoms for both the heterostructures, indicating that Li atoms exhibit weak repulsive interaction. The positive open-circuit voltage (OCV) of less than 2.20 V indicates that both the heterostructures are useful as anode materials. The theoretical specific capacity is 302.36 mAh/g for Ti2CO2/graphene and 255.97 mAh/g for Ti2CS2/graphene. Ab initio MD simulations reveal that the Li diffusion rate is 8.4 × 10−7 and 8.5 × 10−7 cm2/s for Ti2CO2/graphene and Ti2CS2/graphene. Therefore, both the Ti2CO2/graphene and Ti2CS2/graphene heterostructures can be considered promising anode materials for Li-ion batteries due to their structural stability, lower diffusion energy barrier, high Li diffusion rate, and positive calculated average voltage of less than 2.2 V.

二维Ti2CY2 (Y = O, S) MXene/石墨烯Van der Waals异质结构作为锂离子电池潜在负极材料的比较研究:第一性原理计算
随着高性能储能器件需求的不断增加,对高能量密度和工作电压的替代负极材料的需求日益迫切。二维范德华(vdW)异质结构由于其较大的表面积和可调节的层间距而得到了广泛的应用。在这项工作中,我们采用第一性原理计算来比较O和S功能化Ti2CY2/石墨烯(Y = O, S) vdW异质结构的结构、电子、吸附和电化学性能。由O和S功能化的MXene和石墨烯层形成的优化异质结构分别为3.04和3.40 Å,每个原子的结合能分别为- 0.019和- 0.018 eV。研究发现,在Ti2CY2/石墨烯层之间嵌入锂原子比在异质结构的顶部或下方嵌入锂原子在热力学上更有利。Bader电荷转移分析证实,由于S原子的3p轨道更大,在Li嵌入过程中,O原子获得的电荷- 0.13 e比S原子少,S原子的电荷转移为- 0.47 e。每个Li原子在插层过程中贡献~0.88 ~ 0.89 e。当+ nLi、n = 1、2、3和17时,Ti2CS2/石墨烯的锂原子插层扩散能垒(0.27、0.22、0.12和0.18 eV)低于Ti2CO2/石墨烯(0.45、0.40、0.34和0.28 eV)。CI-NEB研究还证实了两种异质结构的活化能势垒随着插层Li原子的增加而降低,表明Li原子表现出弱的排斥相互作用。正开路电压(OCV)均小于2.20 V,表明这两种异质结构均可作为阳极材料。Ti2CO2/graphene的理论比容量为302.36 mAh/g, Ti2CS2/graphene的理论比容量为255.97 mAh/g。从头算MD模拟表明,Ti2CO2/石墨烯和Ti2CS2/石墨烯的Li扩散速率分别为8.4 × 10−7和8.5 × 10−7 cm2/s。因此,Ti2CO2/石墨烯和Ti2CS2/石墨烯异质结构均具有结构稳定、扩散能垒低、Li扩散速率高、计算平均电压小于2.2 V等优点,有望成为锂离子电池负极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信