Energy Storage最新文献

筛选
英文 中文
A System to Store Waste Heat as Liquid Hydrogen Assisted by Organic Rankine Cycle, Proton Exchange Membrane Electrolyzer, and Mixed Refrigerant Hydrogen Liquefaction Cycle 利用有机朗肯循环、质子交换膜电解槽和混合制冷剂氢液化循环将废热储存为液氢的系统
Energy Storage Pub Date : 2024-11-24 DOI: 10.1002/est2.70064
Abolfazl Nikzad, Mostafa Mafi, Saman Faramarzi
{"title":"A System to Store Waste Heat as Liquid Hydrogen Assisted by Organic Rankine Cycle, Proton Exchange Membrane Electrolyzer, and Mixed Refrigerant Hydrogen Liquefaction Cycle","authors":"Abolfazl Nikzad,&nbsp;Mostafa Mafi,&nbsp;Saman Faramarzi","doi":"10.1002/est2.70064","DOIUrl":"https://doi.org/10.1002/est2.70064","url":null,"abstract":"<div>\u0000 \u0000 <p>This study proposes a system to store waste heat as liquid hydrogen using a proton exchange membrane electrolyzer (PEME) and a mixed refrigerant hydrogen liquefaction cycle. The novelty of this study lies in proposing a waste heat recovery system that stores electricity as liquid hydrogen, consuming less power due to the improved exergy efficiency of the components. The proposed system is analyzed to achieve better efficiency in terms of thermal and exergy efficiencies. Waste heat is used to generate power by an organic Rankin cycle (ORC), produced electricity is utilized in the PEME unit and compressors of liquefaction cycle to produce and liquefy hydrogen, respectively. Codes are written in EES software to simulate the system. Thermodynamic analysis is done in order to achieve better thermal efficiency for the proposed model. Membrane potential at different values of current density is calculated and compared with validate the simulated model. The exergy efficiency of the liquid hydrogen production process is 57%. The exergy efficiency, rate of power produced in ORC, and rate of hydrogen production by the electrolyzer increase significantly by increasing the isentropic efficiency of the turbine. At a temperature of 340 K for the evaporator, the thermal efficiency of ORC is obtained at 8.5%, which is approximately 3% higher compared with that of the previous similar process.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable Hydrogen Storage and Methanol Synthesis Through Solar-Powered Co-Electrolysis Using SOEC 利用 SOEC 进行太阳能供电的共电解,实现可持续的氢气储存和甲醇合成
Energy Storage Pub Date : 2024-11-21 DOI: 10.1002/est2.70095
Muhammad Sajid Khan, Muhammad Abid, Chen Chen, Juliana Hj Zaini, Tahir Ratlamwala, Ali Ahmed Alqahtani
{"title":"Sustainable Hydrogen Storage and Methanol Synthesis Through Solar-Powered Co-Electrolysis Using SOEC","authors":"Muhammad Sajid Khan,&nbsp;Muhammad Abid,&nbsp;Chen Chen,&nbsp;Juliana Hj Zaini,&nbsp;Tahir Ratlamwala,&nbsp;Ali Ahmed Alqahtani","doi":"10.1002/est2.70095","DOIUrl":"https://doi.org/10.1002/est2.70095","url":null,"abstract":"<div>\u0000 \u0000 <p>Syngas rich in hydrogen, generated through renewable-powered co-electrolysis of water (H<sub>2</sub>O) and carbon dioxide (CO<sub>2</sub>) using solid oxide electrolysis cells (SOEC), have gained significant attention due to its high efficiency and conversion rates. This method offers a promising solution for mitigating global warming and reducing CO<sub>2</sub> emissions by enabling the storage of intermittent renewable energy. This study investigates solar-integrated co-electrolysis of H<sub>2</sub>O and CO<sub>2</sub> via SOEC to produce hydrogen-rich syngas, which is then utilized for methanol synthesis through a series of heat exchangers and compressors. Parabolic dish solar collectors supply thermal energy, while photovoltaic modules provide electricity for SOEC operation. CO<sub>2</sub> from industrial processes is captured and combined with steam at the SOEC inlet for co-electrolysis. The proposed system is modeled using engineering equation solver software, incorporating mass, energy, and exergy balance equations. The system's performance is analyzed by varying key parameters such as direct normal irradiance, heat exchanger effectiveness, current density, cell temperature, and pressure. The proposed system achieves a solar-to-fuel efficiency of 29.1%, with a methanol production rate of 41.5 kg per hour. Furthermore, an economic analysis was conducted to determine the levelized cost of fuel.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategic Patent Portfolio Management in the Sodium-Ion Battery Industry: Navigating Innovation and Competition 钠离子电池行业的战略性专利组合管理:驾驭创新与竞争
Energy Storage Pub Date : 2024-11-19 DOI: 10.1002/est2.70097
Vinoth Kumar Jayaraman, Annigere S. Prakash
{"title":"Strategic Patent Portfolio Management in the Sodium-Ion Battery Industry: Navigating Innovation and Competition","authors":"Vinoth Kumar Jayaraman,&nbsp;Annigere S. Prakash","doi":"10.1002/est2.70097","DOIUrl":"https://doi.org/10.1002/est2.70097","url":null,"abstract":"<div>\u0000 \u0000 <p>In the rapidly evolving landscape of energy storage technologies, sodium-ion batteries (SIBs) have emerged as promising alternatives to conventional lithium-ion batteries. SIBs exhibit moderate to high specific energy ranging from approximately 70 to 170 Wh/kg, ensuring suitability for diverse applications. Furthermore, with their abundance of raw materials and potential for lower costs, sodium-ion batteries are attracting significant interest from researchers, manufacturers, and investors. This heightened interest is evidenced by the exponential growth in the number of patents filed for SIBs, totalling 142 648 patents. This surge in patent filings underscores the growth pattern of SIBs as promising alternatives in the energy storage landscape. In this dynamic environment, securing and maintaining a robust patent portfolio is imperative for companies and innovators to establish a competitive edge, enabling them to capitalize on the increasing market demand. This perspective examines the strategies involved in building, protecting, and managing a robust patent portfolio as well as provides intellectual property challenges and patent filing opportunities in SIB technologies.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Wind and Solar Integration in a Hybrid Energy System for Enhanced Sustainability 优化混合能源系统中的风能和太阳能集成,增强可持续性
Energy Storage Pub Date : 2024-11-18 DOI: 10.1002/est2.70096
Amir Hossein Forghani, Alireza Arab Solghar, Hassan Hajabdollahi
{"title":"Optimizing Wind and Solar Integration in a Hybrid Energy System for Enhanced Sustainability","authors":"Amir Hossein Forghani,&nbsp;Alireza Arab Solghar,&nbsp;Hassan Hajabdollahi","doi":"10.1002/est2.70096","DOIUrl":"https://doi.org/10.1002/est2.70096","url":null,"abstract":"<div>\u0000 \u0000 <p>A hybrid energy system, comprising a diesel engine as the prime mover, electrical and absorption chillers, a backup boiler, and a multi-effect distillation through thermal vapor compression (MED-TVC) unit, has been utilized to meet the requirements of a residential complex. This study focuses on redesigning and optimizing the system to enhance environmental conditions, reduce pollutants, and minimize the use of fossil energy. The feasibility and design of renewable energy systems, including wind turbines (WTs), photovoltaic panels (PVs), and flat plate collectors (FPCs), have been examined. Genetic algorithm (GA) has been employed for optimization. The hybrid system employs 21 design variables, with 24 design variables chosen for optimization alongside renewable energies. The total annual cost (TAC), encompassing investment, operation, and pollution emission fines, has been chosen as the objective function for minimization. The results indicate that the use of WTs has not been cost-effective, and solar energy can enhance the system's performance in Bandar Abbas, Hormozgan province in Iran. In the case of using a combined system, the objective function value was 2.0472 × 10<sup>6</sup> $/year, and when using renewable energies, the objective function became 1.6795 × 10<sup>6</sup> $/year. Thus, the proposed combined-renewable system has reduced the objective function by 17.96%.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Simulation of Flat Plate Collector With a Tube Rotation and Phase Change Materials Sn3N4-LiNO3-KNO3/Boron-Arsenide for Enhanced Efficiency 设计和模拟带有管旋转和相变材料 Sn3N4-LiNO3-KNO3/Boron-Arsenide 的平板集热器以提高效率
Energy Storage Pub Date : 2024-11-17 DOI: 10.1002/est2.70084
Muhammad Shehram, Talha Farooq
{"title":"Design and Simulation of Flat Plate Collector With a Tube Rotation and Phase Change Materials Sn3N4-LiNO3-KNO3/Boron-Arsenide for Enhanced Efficiency","authors":"Muhammad Shehram,&nbsp;Talha Farooq","doi":"10.1002/est2.70084","DOIUrl":"https://doi.org/10.1002/est2.70084","url":null,"abstract":"<div>\u0000 \u0000 <p>Solar thermal energy is crucial in our transition to renewable energy sources. Recent studies have focused on enhancing the efficiency of solar collectors by minimizing thermal energy loss during absorption. A promising approach involves an innovative design that integrates phase change materials (PCMs) and rotating tubes to capture thermal energy more effectively. Advanced nitride-based salt hydrates, with boron-arsenide additives, enhance thermal performance of the collector. In a flat plate collector using composite PCMs, radiative heat loss decreases from 250 to 210 W (a 6% reduction) with tube rotation, while convective heat loss drops from 225 to 195 W (a 4% decrease). The decomposition rate of the novel PCMs is low, measuring only 0.5% at a maximum temperature of 850°C, with a specific heat capacity of up to 4.50 W/m K. This unique blend, including the Sn₃N₄-LiNO₃-KNO₃/boron arsenide mixture, enhances thermal conductivity by 30%, significantly improving thermal absorption rates. The exergy efficiency achieved with the Nano-enhanced phase change materials (NEPCM) and tube rotation reaches an impressive 90%. With tube rotation at 3 rad/min, the flat plate collector's efficiency improves by 22%, reaching an overall efficiency of 90% at a fluid flow rate of 25 kg/h. Simulations using Anaconda Jupyter Notebook and Python validate the effectiveness of both tube rotation and NEPCM in enhancing collector efficiency.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyether-Derived Carbon Material and Ionic Liquid (Tributylmethylphosphonium iodide) Incorporated Poly(Vinylidene Fluoride-co-Hexafluoropropylene)-Based Polymer Electrolyte for Supercapacitor Application 应用于超级电容器的聚醚衍生碳材料和离子液体(三丁基甲基碘化膦)掺杂聚(偏二氟乙烯-共六氟丙烯)聚合物电解质
Energy Storage Pub Date : 2024-11-17 DOI: 10.1002/est2.70083
Sehrish Nazir, Pramod K. Singh, Amrita Jain, Monika Michalska, M. Z. A. Yahya, S. N. F. Yusuf, Markus Diantoro, Famiza Abdul Latif, Manoj K. Singh
{"title":"Polyether-Derived Carbon Material and Ionic Liquid (Tributylmethylphosphonium iodide) Incorporated Poly(Vinylidene Fluoride-co-Hexafluoropropylene)-Based Polymer Electrolyte for Supercapacitor Application","authors":"Sehrish Nazir,&nbsp;Pramod K. Singh,&nbsp;Amrita Jain,&nbsp;Monika Michalska,&nbsp;M. Z. A. Yahya,&nbsp;S. N. F. Yusuf,&nbsp;Markus Diantoro,&nbsp;Famiza Abdul Latif,&nbsp;Manoj K. Singh","doi":"10.1002/est2.70083","DOIUrl":"https://doi.org/10.1002/est2.70083","url":null,"abstract":"<div>\u0000 \u0000 <p>Poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP)-sodium thiocyanate (NaSCN) solid polymer electrolytes containing different weight ratios of ionic liquid (IL)—tributylmethylphosphonium iodide (TBMPI) were prepared using solution-cast approach. Electrochemical impedance data indicates that increasing ionic liquid into polymer electrolyte matrix increases ionic conductivity and the maximum value of ionic conductivity was obtained at 150 wt% TBMPI, having conductivity value of 8.3 × 10<sup>−5</sup> S cm<sup>−1</sup>. The dielectric measurement supports our conductivity data. Ionic transference number measurement affirms this system to be predominantly ionic in nature, while electrochemical stability window (ESW) was found to be 3.4 V. Polarized optical microscopy (POM) along with differential scanning calorimetry (DSC) suggest suitability of TBMPI as plasticizer, while infrared spectroscopy (FTIR) confirms ion interaction, complexation, and composite nature. The thermogravimetric analysis (TGA) shows thermal stability of these ionic liquid-doped polymer electrolytes (ILDPEs). Using maximum conducting ILDPE, a sandwiched supercapacitor has been fabricated which shows stable performance as high as 228 Fg<sup>−1</sup> using cyclic voltammetry (CV).</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploration of Hydrogen Storage Exhibited by Rh-Decorated Pristine and Defective Graphenes: A First-Principles Study 探索 Rh 醛化的原始石墨烯和缺陷石墨烯的储氢性能:第一原理研究
Energy Storage Pub Date : 2024-11-17 DOI: 10.1002/est2.70088
Amit Ramchiary, Paritosh Mondal
{"title":"Exploration of Hydrogen Storage Exhibited by Rh-Decorated Pristine and Defective Graphenes: A First-Principles Study","authors":"Amit Ramchiary,&nbsp;Paritosh Mondal","doi":"10.1002/est2.70088","DOIUrl":"https://doi.org/10.1002/est2.70088","url":null,"abstract":"<div>\u0000 \u0000 <p>We utilized density functional theory (DFT) to ascertain the storage of hydrogen in Rh-decorated pristine (PG) and defective graphenes, primarily graphitic-N (GNG) and pyridinic-N (PNG). The binding energy of a single Rh atom on PG, GNG, and PNG was found to be −1.87, −2.18, and −4.01 eV, respectively. PG exhibits a weak adsorption energy of hydrogen molecules (−0.06 eV/H<sub>2</sub>). On the other hand, Rh-decorated pristine and defective graphenes show incredibly higher hydrogen adsorption energy. As per the latest guidelines of the U.S. Department of Energy (DOE), the Rh-decorated GNG (Rh@GNG) is found to be the best hydrogen storage material out of the three systems investigated here. The single Rh atom-decorated GNG adsorbs up to 4H<sub>2</sub>. Uniform decoration of graphene surfaces with Rh atoms is necessary to improve hydrogen storage performance. Both sides of GNG surfaces are decorated with 8Rh atoms, which can adsorb up to 24H<sub>2</sub> molecules, with an average adsorption energy of −0.33 eV/H<sub>2</sub>. The mechanism of H<sub>2</sub> adsorption on the host system has been explored based on DFT-evaluated deformation of charge density, partial density of states (PDOS), and non-covalent interaction (NCI) plots. For a better understanding of the adsorption process, the diffusion energy barrier of Rh metal is computed using the climbing image nudged elastic band (CI-NEB) method, and the thermal stability has been evaluated through ab initio molecular dynamics (AIMD) simulations.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Room-Temperature Reversible Hydrogen Storage in Scandium-Decorated [6]Cycloparaphenylene: Computational Insights 钪蜕变的 [6]Cycloparaphenylene 中的室温可逆氢存储:计算见解
Energy Storage Pub Date : 2024-11-10 DOI: 10.1002/est2.70093
Smruti Ranjan Parida, Rakesh Kumar Sahoo, Ankita Jaiswal, Paramjit Kour, Brahmananda Chakraborty, Sridhar Sahu
{"title":"Room-Temperature Reversible Hydrogen Storage in Scandium-Decorated [6]Cycloparaphenylene: Computational Insights","authors":"Smruti Ranjan Parida,&nbsp;Rakesh Kumar Sahoo,&nbsp;Ankita Jaiswal,&nbsp;Paramjit Kour,&nbsp;Brahmananda Chakraborty,&nbsp;Sridhar Sahu","doi":"10.1002/est2.70093","DOIUrl":"https://doi.org/10.1002/est2.70093","url":null,"abstract":"<div>\u0000 \u0000 <p>This study discusses the hydrogen storage and delivery capacity of Sc-decorated [6]cycloparaphenylene ([6]CPP) using dispersion-corrected density functional theory calculations (DFT + D3). The scandium atoms are decorated over [6]CPP via Dewar coordination with an average binding energy of 1.33 eV. Each Sc atom stores up to 5H<sub>2</sub> molecules in quasi-molecular form at an average adsorption energy ranging from 0.23 to 0.36 eV/H<sub>2</sub>. The system's stability before and after H<sub>2</sub> adsorption is checked using reactivity parameters. The maximum hydrogen gravimetric capacity of the system is found to be 7.68 wt% at low temperatures at 1–60 bar pressure. With an increase in temperature (300–420 K), the gravimetric density is more than 5.5 wt% (US-DOE target) below 60 bar. Atom-Centered Density Matrix Propagation (ADMP)-molecular dynamics (MD) simulations reveal that the desorption of H<sub>2</sub> molecules from [6]CPP starts at around 300 K/1 bar, and complete desorption occurs above 480 K. The minimum Van't Hoff desorption temperature for [6]CPP-Sc is 296.9 K at 1 atm pressure. Insignificant change in the structure of [6]CPP-Sc during adsorption and desorption processes promises stability and reversibility of the system. Hence, we believe that Sc-decorated [6]CPP can be a promising candidate for hydrogen storage applications.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensitivity Analysis of a Nuclear Hybrid Energy System With Thermal Energy Storage in Deregulated Electricity Markets Considering Time Series Uncertainty in Electricity Price 考虑到电价时序不确定性的放松管制电力市场中带有热能存储的核电混合能源系统的敏感性分析
Energy Storage Pub Date : 2024-11-10 DOI: 10.1002/est2.70082
Jacob A. Bryan, Hailei Wang, Paul W. Talbot
{"title":"Sensitivity Analysis of a Nuclear Hybrid Energy System With Thermal Energy Storage in Deregulated Electricity Markets Considering Time Series Uncertainty in Electricity Price","authors":"Jacob A. Bryan,&nbsp;Hailei Wang,&nbsp;Paul W. Talbot","doi":"10.1002/est2.70082","DOIUrl":"https://doi.org/10.1002/est2.70082","url":null,"abstract":"<div>\u0000 \u0000 <p>Adding thermal energy storage to nuclear power plants has been proposed as a way to allow nuclear plants to operate more flexibly and potentially be more competitive in deregulated electricity markets. The economics of these systems in deregulated markets are subject to uncertainties in capital costs, operating costs, and revenue. This study quantifies the uncertainty in the net present value of a nuclear power plant with integrated thermal energy storage in three U.S. deregulated electricity markets considering these sources of uncertainty and quantifies, for the first time, the relative contributions each source makes to the overall uncertainty. To accomplish this, a computationally efficient block bootstrap method is introduced to quantify uncertainty contributions from the stochastic time series of electricity prices, achieving a two order of magnitude decrease computational time compared to the model-based methods used in previous works while also relaxing several strict assumptions made by the model-based approach. Up to 18.5% of the overall variance in net present value is attributable to variance in the electricity price stochastic process, with this sensitivity varying significantly across markets.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical and Thermal Analysis of Lithium-Ion Battery Pack With Different Cell Configurations 不同电芯配置的锂离子电池组的电化学和热分析
Energy Storage Pub Date : 2024-11-10 DOI: 10.1002/est2.70090
Büşra Namaldı Kömürcü, Gülşah Elden, Muhammet Çelik, Mustafa Serdar Genç
{"title":"Electrochemical and Thermal Analysis of Lithium-Ion Battery Pack With Different Cell Configurations","authors":"Büşra Namaldı Kömürcü,&nbsp;Gülşah Elden,&nbsp;Muhammet Çelik,&nbsp;Mustafa Serdar Genç","doi":"10.1002/est2.70090","DOIUrl":"https://doi.org/10.1002/est2.70090","url":null,"abstract":"<div>\u0000 \u0000 <p>The primary purpose of this research is to analyze and evaluate the effects of various discharge rates and cell configurations on the electrochemical and thermal behavior of a Li-ion battery pack that is exposed to ambient air throughout the discharge process. The three-dimensional numerical model is designed to accomplish this purpose and discusses two different cases. While the discharge rate is changed from 0.5 C to 2 C (stepping by 0.5 C) for each cell configuration considered in the first case, the numerical solutions are obtained for the various cell configurations (6S4P and 8S3P) by keeping the discharge rate constant at 1 C. The results obtained from these solutions show that the discharge rate affects a considerable amount of the battery performances and discharge times of the battery packs, activation, and ohmic losses occurring inside each battery cell. Moreover, 6S4P discharges over a longer period (about 25%) than 8S3P. While both activation and ohmic losses decrease with the increase of discharge rate, these losses remain almost constant at 0.5 C discharge rate in all analyzed conditions. As a result, having a battery pack with a long discharge time while maintaining low temperatures is useful and desired. With this in mind, while evaluating battery packs, the 6S4P battery pack looks to have the best arrangement.</p>\u0000 </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信