Microwave-Induced Structural Modifications in Reduced Graphene Oxide for Enhanced Supercapacitive Performance

Energy Storage Pub Date : 2025-05-13 DOI:10.1002/est2.70180
Poonam Mahendia, Ritu Jangra, Manoj Karokoti, Suman Mahendia, O. P. Sinha
{"title":"Microwave-Induced Structural Modifications in Reduced Graphene Oxide for Enhanced Supercapacitive Performance","authors":"Poonam Mahendia,&nbsp;Ritu Jangra,&nbsp;Manoj Karokoti,&nbsp;Suman Mahendia,&nbsp;O. P. Sinha","doi":"10.1002/est2.70180","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The state of the art in improving the thermal and electrochemical properties of reduced graphene oxide (RGO) prepared via microwave heat treatment (MWHT)-induced chemical reduction of modified Hummer's method synthesized GO is presented. Microwave heating is an efficient and green method of heating. It is a facile and mild heating method through which uniform and synchronized heating can be done. Thus, it helps in enhancing the uniform porosity throughout the graphene matrix. The optical, structural, and thermal characterization of synthesized RGO and after microwave heat treatment (MWRGO) have been done using UV–Visible absorption spectroscopy, Transmission Electron Microscopy (TEM), Fourier Transform Infrared (FTIR) spectroscopy, Raman spectroscopy, and Thermogravimetric Analysis (TGA). The prepared materials were tested for supercapacitor (SC) in a symmetric electric double layer capacitor (EDLC) type parallel plate cell design. The prepared cell has been checked for electrochemical performance using cyclic voltammetry (CV) measurements and cross-confirmed through Electrochemical Impedance spectroscopy (EIS) and Galvanostatic Charge–discharge (GCD) measurements. Enhanced electrochemical performance of MWRGO-based supercapacitive cell depicts specific capacitance of 289 F/g at low ESR of 3.4 Ω and energy density of 24 Wh/Kg at power density of 1000 W/Kg. This is due to enhanced specific surface area to 731.81 m<sup>2</sup>/g after microwave heat treatment, which hence plays a major role in achieving virtuous electrochemical performance of RGO for energy applications.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The state of the art in improving the thermal and electrochemical properties of reduced graphene oxide (RGO) prepared via microwave heat treatment (MWHT)-induced chemical reduction of modified Hummer's method synthesized GO is presented. Microwave heating is an efficient and green method of heating. It is a facile and mild heating method through which uniform and synchronized heating can be done. Thus, it helps in enhancing the uniform porosity throughout the graphene matrix. The optical, structural, and thermal characterization of synthesized RGO and after microwave heat treatment (MWRGO) have been done using UV–Visible absorption spectroscopy, Transmission Electron Microscopy (TEM), Fourier Transform Infrared (FTIR) spectroscopy, Raman spectroscopy, and Thermogravimetric Analysis (TGA). The prepared materials were tested for supercapacitor (SC) in a symmetric electric double layer capacitor (EDLC) type parallel plate cell design. The prepared cell has been checked for electrochemical performance using cyclic voltammetry (CV) measurements and cross-confirmed through Electrochemical Impedance spectroscopy (EIS) and Galvanostatic Charge–discharge (GCD) measurements. Enhanced electrochemical performance of MWRGO-based supercapacitive cell depicts specific capacitance of 289 F/g at low ESR of 3.4 Ω and energy density of 24 Wh/Kg at power density of 1000 W/Kg. This is due to enhanced specific surface area to 731.81 m2/g after microwave heat treatment, which hence plays a major role in achieving virtuous electrochemical performance of RGO for energy applications.

微波诱导的还原氧化石墨烯结构修饰增强超级电容性能
介绍了微波热处理(MWHT)诱导化学还原法制备的还原氧化石墨烯(RGO)的热性能和电化学性能的最新研究进展。微波加热是一种高效、绿色的加热方式。它是一种简便、温和的加热方法,可以实现均匀、同步的加热。因此,它有助于增强整个石墨烯基体的均匀孔隙度。利用紫外-可见吸收光谱、透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)、拉曼光谱和热重分析(TGA)对合成的RGO和微波热处理后的RGO (MWRGO)进行了光学、结构和热表征。在对称双电层电容器(EDLC)型平行板电池设计中对制备的材料进行了超级电容器(SC)测试。用循环伏安法(CV)测量和电化学阻抗谱(EIS)和恒流充放电(GCD)测量交叉验证了所制备的电池的电化学性能。mwro基超级电容电池在低ESR为3.4 Ω时的比电容达到289 F/g,在功率密度为1000 W/Kg时的能量密度达到24 Wh/Kg。这是由于微波热处理后的比表面积提高到731.81 m2/g,因此在实现能量应用的RGO的良好电化学性能方面发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信