孔径对钇原子修饰共价有机骨架储氢能力调控的理论研究

Energy Storage Pub Date : 2025-04-25 DOI:10.1002/est2.70177
V. M. Vasanthakannan, K. Senthilkumar
{"title":"孔径对钇原子修饰共价有机骨架储氢能力调控的理论研究","authors":"V. M. Vasanthakannan,&nbsp;K. Senthilkumar","doi":"10.1002/est2.70177","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The electronic structure and hydrogen storage properties of benzene-based covalent organic frameworks (COFs) with pore diameters of 0.53, 0.99, and 1.45 nm are studied using density functional theory calculations. The studied COFs show poor H<sub>2</sub> molecule adsorption properties. To enhance their H<sub>2</sub> molecule adsorption properties, Y atoms are decorated on the COFs with an average binding energy of about 5–6 eV per Y atom. Each Y atom of Y-decorated COFs, YCOF1, YCOF2, and YCOF3 effectively adsorbs six H<sub>2</sub> molecules with an average H<sub>2</sub> adsorption energy of −0.28, −0.34, and −0.35 eV per H<sub>2</sub> molecule, respectively. The H<sub>2</sub> molecule storage capacity of YCOF1, YCOF2, and YCOF3 is found to be 4.7%, 5.1%, and 6.5% with desorption temperatures of 358, 434, and 447 K, respectively. The findings show that a larger pore diameter provides more space for metal atom decoration and thereby increases the H<sub>2</sub> molecule adsorption capacity. The H<sub>2</sub> molecule adsorption weight percentage of YCOF3 meets the target H<sub>2</sub> molecule storage capacity suggested by the U.S. Department of Energy and Fuel Cells and Hydrogen Joint Undertaking (FCH-JU) in Europe.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Pore Diameter on Tuning the Hydrogen Storage Capacity of Yttrium Atom-Decorated Covalent Organic Frameworks: A Theoretical Study\",\"authors\":\"V. M. Vasanthakannan,&nbsp;K. Senthilkumar\",\"doi\":\"10.1002/est2.70177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The electronic structure and hydrogen storage properties of benzene-based covalent organic frameworks (COFs) with pore diameters of 0.53, 0.99, and 1.45 nm are studied using density functional theory calculations. The studied COFs show poor H<sub>2</sub> molecule adsorption properties. To enhance their H<sub>2</sub> molecule adsorption properties, Y atoms are decorated on the COFs with an average binding energy of about 5–6 eV per Y atom. Each Y atom of Y-decorated COFs, YCOF1, YCOF2, and YCOF3 effectively adsorbs six H<sub>2</sub> molecules with an average H<sub>2</sub> adsorption energy of −0.28, −0.34, and −0.35 eV per H<sub>2</sub> molecule, respectively. The H<sub>2</sub> molecule storage capacity of YCOF1, YCOF2, and YCOF3 is found to be 4.7%, 5.1%, and 6.5% with desorption temperatures of 358, 434, and 447 K, respectively. The findings show that a larger pore diameter provides more space for metal atom decoration and thereby increases the H<sub>2</sub> molecule adsorption capacity. The H<sub>2</sub> molecule adsorption weight percentage of YCOF3 meets the target H<sub>2</sub> molecule storage capacity suggested by the U.S. Department of Energy and Fuel Cells and Hydrogen Joint Undertaking (FCH-JU) in Europe.</p>\\n </div>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":\"7 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.70177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用密度泛函理论计算研究了孔径分别为0.53、0.99和1.45 nm的苯基共价有机骨架(COFs)的电子结构和储氢性能。所研究的COFs对H2分子的吸附性能较差。为了提高COFs对H2分子的吸附性能,将Y原子修饰在COFs上,每个Y原子的平均结合能约为5-6 eV。Y修饰COFs、YCOF1、YCOF2和YCOF3的每个Y原子能有效吸附6个H2分子,H2分子的平均吸附能分别为- 0.28、- 0.34和- 0.35 eV。在解吸温度分别为358,434和447 K时,YCOF1、YCOF2和YCOF3的H2分子存储容量分别为4.7%、5.1%和6.5%。研究结果表明,较大的孔径为金属原子的修饰提供了更多的空间,从而提高了H2分子的吸附能力。YCOF3的H2分子吸附重量百分比满足美国能源和燃料电池与氢联合事业(FCH-JU)在欧洲提出的H2分子存储容量目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Role of Pore Diameter on Tuning the Hydrogen Storage Capacity of Yttrium Atom-Decorated Covalent Organic Frameworks: A Theoretical Study

The electronic structure and hydrogen storage properties of benzene-based covalent organic frameworks (COFs) with pore diameters of 0.53, 0.99, and 1.45 nm are studied using density functional theory calculations. The studied COFs show poor H2 molecule adsorption properties. To enhance their H2 molecule adsorption properties, Y atoms are decorated on the COFs with an average binding energy of about 5–6 eV per Y atom. Each Y atom of Y-decorated COFs, YCOF1, YCOF2, and YCOF3 effectively adsorbs six H2 molecules with an average H2 adsorption energy of −0.28, −0.34, and −0.35 eV per H2 molecule, respectively. The H2 molecule storage capacity of YCOF1, YCOF2, and YCOF3 is found to be 4.7%, 5.1%, and 6.5% with desorption temperatures of 358, 434, and 447 K, respectively. The findings show that a larger pore diameter provides more space for metal atom decoration and thereby increases the H2 molecule adsorption capacity. The H2 molecule adsorption weight percentage of YCOF3 meets the target H2 molecule storage capacity suggested by the U.S. Department of Energy and Fuel Cells and Hydrogen Joint Undertaking (FCH-JU) in Europe.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信