Improving Electric Vehicle Air-Cooled Cylindrical Battery Temperature Control Systems: A Computational Fluid Dynamics (CFD) Study of an Innovative Uniform Flow Distribution Plate

Energy Storage Pub Date : 2025-01-06 DOI:10.1002/est2.70108
Shweta S. Suryavanshi, P. M. Ghanegaonkar
{"title":"Improving Electric Vehicle Air-Cooled Cylindrical Battery Temperature Control Systems: A Computational Fluid Dynamics (CFD) Study of an Innovative Uniform Flow Distribution Plate","authors":"Shweta S. Suryavanshi,&nbsp;P. M. Ghanegaonkar","doi":"10.1002/est2.70108","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Temperature significantly affects the operation of lithium-ion batteries in electric vehicles (EVs). A battery temperature management system (BTMS) is necessary for battery safety and extended lifespan. This study proposes an innovative flow circulation technique to achieve uniform airflow distribution throughout the 26 650 cylindrical cells arranged in a 5P5S configuration. The 3D models of nine aluminum perforated plates with varying topologies have been developed to identify a more effective cooling method for rectangular battery packs. The CFD simulations examine the effects of air velocities, air inlet temperatures, C rate, and cell spacing (L) on the nine-plate structure. Optimal cooling is achieved with 2 mm cell spacing, evenly dispersing airflow and enhancing heat dissipation. An investigation has been conducted for various C rates. The best thermal performance is obtained at air speeds of 0.8 m/s for 0.5 C, 5 m/s for 1C, and 30 m/s for 2C. The outcome shows that altering the flow distribution layout is a practical way to improve the BP's cooling capacity.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Temperature significantly affects the operation of lithium-ion batteries in electric vehicles (EVs). A battery temperature management system (BTMS) is necessary for battery safety and extended lifespan. This study proposes an innovative flow circulation technique to achieve uniform airflow distribution throughout the 26 650 cylindrical cells arranged in a 5P5S configuration. The 3D models of nine aluminum perforated plates with varying topologies have been developed to identify a more effective cooling method for rectangular battery packs. The CFD simulations examine the effects of air velocities, air inlet temperatures, C rate, and cell spacing (L) on the nine-plate structure. Optimal cooling is achieved with 2 mm cell spacing, evenly dispersing airflow and enhancing heat dissipation. An investigation has been conducted for various C rates. The best thermal performance is obtained at air speeds of 0.8 m/s for 0.5 C, 5 m/s for 1C, and 30 m/s for 2C. The outcome shows that altering the flow distribution layout is a practical way to improve the BP's cooling capacity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信