优异析氧反应及储能应用的Zn3(PO4)2·4H2O/TiO2结构

Energy Storage Pub Date : 2025-01-06 DOI:10.1002/est2.70112
Mosin Khan, Ritu Raj, Mange Ram, Anju Rani, Krishna Kanta Haldar
{"title":"优异析氧反应及储能应用的Zn3(PO4)2·4H2O/TiO2结构","authors":"Mosin Khan,&nbsp;Ritu Raj,&nbsp;Mange Ram,&nbsp;Anju Rani,&nbsp;Krishna Kanta Haldar","doi":"10.1002/est2.70112","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this study, we present the synthesis and characterization of a high-performance Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>·4H₂O/TiO<sub>2</sub> nanocomposite, designed as a versatile electrocatalyst for advanced energy storage and conversion applications. The synthesis of the Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>·4H₂O/TiO<sub>2</sub> nanocomposite was confirmed using various sophisticated analytical techniques such as powder x-ray diffraction, FTIR, UV spectroscopy, FESEM imaging, EDX, and XPS etc. Notably, the nanocomposite demonstrates exceptional performance in the oxygen evolution reaction (OER), with a low overpotential of 250 mV at a current density of 50 mV/cm<sup>2</sup> and a Tafel slope of 129 mV/dec, indicating superior kinetics. Furthermore, it demonstrates a specific capacitance of 112 F/g at a scan rate of 20 mV/s and remarkable cyclic stability, retaining 91% capacitance over 1000 cycles in supercapacitor applications. Additionally, in a practical application, the nanocomposite successfully powered a red light-emitting diode (LED) for 11 min. The combined effect of Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>·4H₂O<sub>2</sub> and TiO<sub>2</sub> contributes to its outstanding electrochemical properties. This makes it a promising candidate for sustainable energy solutions, with the potential to enhance the efficiency and durability of energy storage and conversion systems.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zn3(PO4)2·4H2O/TiO2 Structure for Superior Oxygen Evolution Reaction and Energy Storage Applications\",\"authors\":\"Mosin Khan,&nbsp;Ritu Raj,&nbsp;Mange Ram,&nbsp;Anju Rani,&nbsp;Krishna Kanta Haldar\",\"doi\":\"10.1002/est2.70112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this study, we present the synthesis and characterization of a high-performance Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>·4H₂O/TiO<sub>2</sub> nanocomposite, designed as a versatile electrocatalyst for advanced energy storage and conversion applications. The synthesis of the Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>·4H₂O/TiO<sub>2</sub> nanocomposite was confirmed using various sophisticated analytical techniques such as powder x-ray diffraction, FTIR, UV spectroscopy, FESEM imaging, EDX, and XPS etc. Notably, the nanocomposite demonstrates exceptional performance in the oxygen evolution reaction (OER), with a low overpotential of 250 mV at a current density of 50 mV/cm<sup>2</sup> and a Tafel slope of 129 mV/dec, indicating superior kinetics. Furthermore, it demonstrates a specific capacitance of 112 F/g at a scan rate of 20 mV/s and remarkable cyclic stability, retaining 91% capacitance over 1000 cycles in supercapacitor applications. Additionally, in a practical application, the nanocomposite successfully powered a red light-emitting diode (LED) for 11 min. The combined effect of Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>·4H₂O<sub>2</sub> and TiO<sub>2</sub> contributes to its outstanding electrochemical properties. This makes it a promising candidate for sustainable energy solutions, with the potential to enhance the efficiency and durability of energy storage and conversion systems.</p>\\n </div>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.70112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们介绍了高性能Zn3(PO4)2·4H₂O/TiO2纳米复合材料的合成和表征,该复合材料被设计为先进储能和转换应用的多功能电催化剂。采用粉末x射线衍射、FTIR、UV、FESEM、EDX、XPS等分析技术证实了Zn3(PO4)2·4H₂O/TiO2纳米复合材料的合成。值得注意的是,该纳米复合材料在析氧反应(OER)中表现出优异的性能,在电流密度为50 mV/cm2时过电位低至250 mV,塔菲尔斜率为129 mV/dec,表明其具有优异的动力学性能。此外,它在扫描速率为20 mV/s时的比电容为112 F/g,并且在超级电容器应用中具有显着的循环稳定性,在1000次循环中保持91%的电容。此外,在实际应用中,纳米复合材料成功地为红色发光二极管(LED)供电11分钟。Zn3(PO4)2·4H₂O2与TiO2的共同作用使其具有优异的电化学性能。这使得它成为可持续能源解决方案的一个有希望的候选者,具有提高能量存储和转换系统的效率和耐久性的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Zn3(PO4)2·4H2O/TiO2 Structure for Superior Oxygen Evolution Reaction and Energy Storage Applications

Zn3(PO4)2·4H2O/TiO2 Structure for Superior Oxygen Evolution Reaction and Energy Storage Applications

In this study, we present the synthesis and characterization of a high-performance Zn3(PO4)2·4H₂O/TiO2 nanocomposite, designed as a versatile electrocatalyst for advanced energy storage and conversion applications. The synthesis of the Zn3(PO4)2·4H₂O/TiO2 nanocomposite was confirmed using various sophisticated analytical techniques such as powder x-ray diffraction, FTIR, UV spectroscopy, FESEM imaging, EDX, and XPS etc. Notably, the nanocomposite demonstrates exceptional performance in the oxygen evolution reaction (OER), with a low overpotential of 250 mV at a current density of 50 mV/cm2 and a Tafel slope of 129 mV/dec, indicating superior kinetics. Furthermore, it demonstrates a specific capacitance of 112 F/g at a scan rate of 20 mV/s and remarkable cyclic stability, retaining 91% capacitance over 1000 cycles in supercapacitor applications. Additionally, in a practical application, the nanocomposite successfully powered a red light-emitting diode (LED) for 11 min. The combined effect of Zn3(PO4)2·4H₂O2 and TiO2 contributes to its outstanding electrochemical properties. This makes it a promising candidate for sustainable energy solutions, with the potential to enhance the efficiency and durability of energy storage and conversion systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信