Advanced Optical Materials最新文献

筛选
英文 中文
Benzothiadiazole-Based Dichroic Dyes: Novel Approaches for Electrically Tunable Liquid Crystal Smart Windows
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2025-02-27 DOI: 10.1002/adom.202402687
Danyang Wan, Yongchi Ma, Juanli Li, Minggang Hu, Lexuan Liang, Lingchao Mo, Zhaoyi Che, Chen Tang, Kang Zhao, Hua Jiao, Jian Li
{"title":"Benzothiadiazole-Based Dichroic Dyes: Novel Approaches for Electrically Tunable Liquid Crystal Smart Windows","authors":"Danyang Wan,&nbsp;Yongchi Ma,&nbsp;Juanli Li,&nbsp;Minggang Hu,&nbsp;Lexuan Liang,&nbsp;Lingchao Mo,&nbsp;Zhaoyi Che,&nbsp;Chen Tang,&nbsp;Kang Zhao,&nbsp;Hua Jiao,&nbsp;Jian Li","doi":"10.1002/adom.202402687","DOIUrl":"https://doi.org/10.1002/adom.202402687","url":null,"abstract":"<p>A series of benzothiadiazole (BT)-based dichroic dyes with donor–acceptor–donor (D–A–D) molecular frameworks is designed and synthesized, exhibiting absorption spectra that cover the visible light region and are tunable through molecular modifications. Most of the newly synthesized dyes show high dichroic ratios and order parameters, ensuring strong optical anisotropy and good alignment within the liquid crystal host mixture. The performance of individual dyes in smart window applications is evaluated, with transmittance changes observed under dynamic electric fields, demonstrating their potential for use in electrically tunable smart windows. To achieve full visible-light modulation, the combination of complementary absorption dyes is screened and an optimized mixture Mix-7 is obtained, which not only achieves full visible-light absorption coverage but also demonstrates smooth and dynamic transmittance modulation under varying voltages. Finally, a prototype smart window filled with Mix-7 is fabricated to validate the continuous tunability of dye-doped liquid crystal-based systems. Additionally, further introduction of a polarizer film significantly reduces the transmittance of the demo, especially in the OFF state which presents an almost completely dark state, highlighting the potential for automotive smart window applications.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 8","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photon-Engineered All-Day Radiative Warming Utilizing Solar and Atmospheric Energy
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2025-02-27 DOI: 10.1002/adom.202402432
Yining Zhu, Huanzheng Zhu, Rongxuan Zhu, Yiwei Zhou, Min Qiu, Qiang Li
{"title":"Photon-Engineered All-Day Radiative Warming Utilizing Solar and Atmospheric Energy","authors":"Yining Zhu,&nbsp;Huanzheng Zhu,&nbsp;Rongxuan Zhu,&nbsp;Yiwei Zhou,&nbsp;Min Qiu,&nbsp;Qiang Li","doi":"10.1002/adom.202402432","DOIUrl":"https://doi.org/10.1002/adom.202402432","url":null,"abstract":"<p>Maintaining optimal temperatures continuously is crucial for various applications, yet existing methods relying on selective solar absorbers fail to provide continuous warmth throughout the entire day. A photon-engineered flexible film is proposed for all-day radiative warming, integrating multiple functional layers to regulate radiation across different spectral bands. This design enhances the heat absorption efficiency of solar and atmospheric energy (α<sub>0.3−2.5</sub> <sub>µm</sub> = 0.95, α<sub>5−8</sub> <sub>µm</sub> = 0.75, α<sub>14−16</sub> <sub>µm</sub> = 0.84) while minimizing outward radiation (ɛ<sub>8-14</sub> <sub>µm</sub> = 0.13). Experimental validation demonstrates superior performance over traditional low-emissivity warming blankets under varying environmental conditions, achieving 9.4 °C higher temperature during the day and 1.4 °C higher at night. Moreover, the film's remarkable warming capability highlights its significant application value in anti-condensation. This underscores its potential as a sustainable and effective thermal management solution for carbon neutrality.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 8","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bio-Inspired Bright Non-Iridescent Structurally Colored Nanopigments Featuring Additive Color Mixing Performance (Advanced Optical Materials 6/2025)
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2025-02-24 DOI: 10.1002/adom.202570059
Wentao Wang, Wenzhen Zhang, Yicheng Zhou, Yuyuan Yao, Bingtao Tang, Liming Ding
{"title":"Bio-Inspired Bright Non-Iridescent Structurally Colored Nanopigments Featuring Additive Color Mixing Performance (Advanced Optical Materials 6/2025)","authors":"Wentao Wang,&nbsp;Wenzhen Zhang,&nbsp;Yicheng Zhou,&nbsp;Yuyuan Yao,&nbsp;Bingtao Tang,&nbsp;Liming Ding","doi":"10.1002/adom.202570059","DOIUrl":"https://doi.org/10.1002/adom.202570059","url":null,"abstract":"<p><b>Photonic Pigments</b></p><p>Inspired by the Steller's jay, non-iridescent structurally colored nanopigments composed of hollow SiO<sub>2</sub> microspheres with amorphous carbon on the inner wall of the shell and disordered metasurfaces on the shell layer were created. Different from previous studies, each individual microsphere is an independent chromogenic unit and has additive color mixing performance. More details can be found in article 2402324 by Wentao Wang, Liming Ding, and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 6","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202570059","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143475822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Independent and Free Control of Multiple Beams Enabled by Wideband Spin-Decoupled Metasurface (Advanced Optical Materials 6/2025)
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2025-02-24 DOI: 10.1002/adom.202570061
Fengxia Li, Xiaohan Yin, Jia-Yuan Yin, Jing-Ya Deng
{"title":"Independent and Free Control of Multiple Beams Enabled by Wideband Spin-Decoupled Metasurface (Advanced Optical Materials 6/2025)","authors":"Fengxia Li,&nbsp;Xiaohan Yin,&nbsp;Jia-Yuan Yin,&nbsp;Jing-Ya Deng","doi":"10.1002/adom.202570061","DOIUrl":"https://doi.org/10.1002/adom.202570061","url":null,"abstract":"<p><b>Spin-Decoupled Metasurface</b></p><p>In article 2401777, Jing-Ya Deng and co-workers propose a spin-decoupled strategy to generate multiple beams based on polarization conversion meta-atom by regulating its cross-polarized components. Combining propagation and PB phases, the deflection angles, polarizations, and topological charges can be independently and freely controlled in wideband, which can be utilized to polarization multiplexing and multichannel meta-devices in communication, imaging, and target detection.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 6","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202570061","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143475809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Strategies for Performance Enhancement in Micro-LEDs: a Synoptic Review of III-V Semiconductor Technology (Advanced Optical Materials 6/2025)
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2025-02-24 DOI: 10.1002/adom.202570060
Driss Mouloua, Michael Martin, Miguel Beruete, Christophe Jany, Karim Hassan, Thierry Baron
{"title":"Exploring Strategies for Performance Enhancement in Micro-LEDs: a Synoptic Review of III-V Semiconductor Technology (Advanced Optical Materials 6/2025)","authors":"Driss Mouloua,&nbsp;Michael Martin,&nbsp;Miguel Beruete,&nbsp;Christophe Jany,&nbsp;Karim Hassan,&nbsp;Thierry Baron","doi":"10.1002/adom.202570060","DOIUrl":"https://doi.org/10.1002/adom.202570060","url":null,"abstract":"<p><b>Semiconductor Technology</b></p><p>In article 2402777, Driss Mouloua, Thierry Baron, and co-workers explore various strategies to enhance the performance of Micro-light-emitting diode (Micro-LED) technologies, including passivation, distributed Bragg reflectors, metamaterials, plasmonics, and two-dimensional materials. The paper also examines fabrication and integration techniques, key factors such as external quantum efficiency, emission wavelength, and electrical injection, and discusses applications and future directions.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 6","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202570060","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143475816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Transmission Mid-Infrared Bandpass Filters using Hybrid Metal-Dielectric Metasurfaces for CO2 Sensing
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2025-02-21 DOI: 10.1002/adom.202402603
Amr Soliman, C Williams, Richard Hopper, Florin Udrea, Haider Butt, Timothy D. Wilkinson
{"title":"High-Transmission Mid-Infrared Bandpass Filters using Hybrid Metal-Dielectric Metasurfaces for CO2 Sensing","authors":"Amr Soliman,&nbsp;C Williams,&nbsp;Richard Hopper,&nbsp;Florin Udrea,&nbsp;Haider Butt,&nbsp;Timothy D. Wilkinson","doi":"10.1002/adom.202402603","DOIUrl":"https://doi.org/10.1002/adom.202402603","url":null,"abstract":"<p>Mid-infrared (MIR) spectroscopy is widely applied in many applications such as gas sensing, industrial inspection, astronomy, and imaging. While thin-film narrowband interference filters are cost-effective for MIR sensing, their complex fabrication limits their suitability for miniaturized systems. Plasmonic nanostructures, though explored for MIR applications, suffer from broad spectral responses and low efficiencies due to the ohmic losses inherent in metals. All-dielectric metasurfaces, with low intrinsic losses, have been proposed as alternatives for MIR spectroscopy. However, their operation is typically limited to reflection mode. In this work, a hybrid metal-dielectric metasurface operating in transmission mode for MIR spectroscopy is introduced. Composed of germanium (Ge) atop aluminium (Al) cylinders on a calcium fluoride (CaF<sub>2</sub>) substrate, the metasurface achieves high transmission efficiency (80%) at λ = 2.6 µm and a narrow full-width-half-maximum of 0.4 µm. The transmission response arises due to the hybridization of modes between the Ge and Al structures. Numerical simulations are demonstrated, a straightforward fabrication method, and successful deployment as an in-line optical filter for CO<sub>2</sub> gas detection, achieving a detection limit of ≈0.04% (≈400 ppm). This work highlights the potential of hybrid metasurfaces as in-line gas sensing filters in MIR spectroscopy.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 8","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202402603","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Learned Structure-Property Correlation Between Nanohelices and Circular Dichroism 机器学习纳米螺旋与环二色性之间的结构-性能相关性
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2025-02-21 DOI: 10.1002/adom.202402595
Juanshu Wu, Yingming Pu, Jin Wang, Bing Gu, Xin Chen, Hongyu Chen
{"title":"Machine Learned Structure-Property Correlation Between Nanohelices and Circular Dichroism","authors":"Juanshu Wu,&nbsp;Yingming Pu,&nbsp;Jin Wang,&nbsp;Bing Gu,&nbsp;Xin Chen,&nbsp;Hongyu Chen","doi":"10.1002/adom.202402595","DOIUrl":"https://doi.org/10.1002/adom.202402595","url":null,"abstract":"<p>Rational design of chiral nanostructures with desired Circular Dichroism (CD) spectra requires a quantitative structure-property relationship, which has so far been unavailable. Using a data-driven method, the aim is to establish such a relationship for nanohelices, a prevalent structural element of chiral nanostructures. Given the challenges in synthesizing nanohelices and separating racemic mixtures, obtaining extensive CD data has been difficult. Instead, CD spectra of 1260 nanohelices are stimulated using finite-difference time-domain method. This dataset is used to train a convolutional neural network that can accurately predict the CD spectra using a few key structural parameters such as pitch and curl. Moreover, an inverse design model is developed that can generate the right helix with the desired CD. To establish quantitative relationships, Shapley Additive explanations analysis and case studies are devised for the prediction model. The algorithm efficiently analyzes the structure-property correlation, revealing the specific degrees of structural influence on the spectroscopic characteristics. Furthermore, the neural-network-based model can be extended via transfer learning to predict CD spectra of nanohelices made of other noble metals (Ag, Cu). It is believed that AI-based approaches can significantly broaden the scope of wet-chemistry nanosynthesis and computational techniques in the design of chiral nanostructures.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 9","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143689433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in Narrow Emission Bandwidth Materials for Application in Organic Light-Emitting Diodes
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2025-02-21 DOI: 10.1002/adom.202402653
Jihoon Kang, Dong Jin Shin, Jun Yeob Lee
{"title":"Recent Advances in Narrow Emission Bandwidth Materials for Application in Organic Light-Emitting Diodes","authors":"Jihoon Kang,&nbsp;Dong Jin Shin,&nbsp;Jun Yeob Lee","doi":"10.1002/adom.202402653","DOIUrl":"https://doi.org/10.1002/adom.202402653","url":null,"abstract":"<p>The preparation of narrow emission bandwidth materials is crucial for the development of advanced organic light-emitting diodes (OLEDs). In this review article, state-of-the-art methodologies used for the preparation of narrow bandwidth emitters with high color purity are summarized, and favorable design strategies are rationally organized. Currently used OLEDs have some issues, such as device stabilization that must be resolved, and color purity should also be considered. Given the recent exponential growth in the number and types of narrowband emissive organic emitters and organometallic complexes exhibiting multiple-resonance thermally activated delayed fluorescence and metal-to-ligand charge transfer characteristics, there is an urgent need to establish key technology descriptors for OLEDs with high color purity. In this review, recent developments in boron, fused indolocarbazole, carbonyl, phosphine oxide, and organometallic complexes that exhibit narrow emission spectra are described, and future directions to advance the performance of such devices are suggested.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 8","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
End-to-End Metasurface Design for Temperature Imaging via Broadband Planck-Radiation Regression
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2025-02-20 DOI: 10.1002/adom.202402498
Sophie Fisher, Gaurav Arya, Arka Majumdar, Zin Lin, Steven G. Johnson
{"title":"End-to-End Metasurface Design for Temperature Imaging via Broadband Planck-Radiation Regression","authors":"Sophie Fisher,&nbsp;Gaurav Arya,&nbsp;Arka Majumdar,&nbsp;Zin Lin,&nbsp;Steven G. Johnson","doi":"10.1002/adom.202402498","DOIUrl":"https://doi.org/10.1002/adom.202402498","url":null,"abstract":"<p>A theoretical framework is presented for temperature imaging from long-wavelength infrared (LWIR) thermal radiation (e.g., 8–12 µm) through the end-to-end design of a metasurface-optics frontend and a computational-reconstruction backend. A new nonlinear reconstruction algorithm, “Planck regression”, is introduced to reconstruct the temperature map from a gray scale sensor image, even in the presence of severe chromatic aberration, by exploiting black body and optical physics particular to thermal imaging. This algorithm is combined with an end-to-end approach that optimizes manufacturable, single-layer metasurfaces to yield the most accurate reconstruction. The designs demonstrate high-quality, noise-robust reconstructions of arbitrary temperature maps (including completely random images) in simulations of an ultra-compact thermal-imaging device. It is also shown that Planck regression is much more generalizable to arbitrary images than a straightforward neural-network reconstruction, which requires a large training set of domain-specific images.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 9","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143688908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Performance Zinc-Lead Alloy Green Quasi-2D Perovskite Light-Emitting Diodes
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2025-02-18 DOI: 10.1002/adom.202402360
Guangchuan Zhong, Guoqiang Yuan, Boyang Li, Langwen Qiu, Yan Zhang, Guanwei Sun, Zhao Chen, Fanyuan Meng, Shi-Jian Su
{"title":"High-Performance Zinc-Lead Alloy Green Quasi-2D Perovskite Light-Emitting Diodes","authors":"Guangchuan Zhong,&nbsp;Guoqiang Yuan,&nbsp;Boyang Li,&nbsp;Langwen Qiu,&nbsp;Yan Zhang,&nbsp;Guanwei Sun,&nbsp;Zhao Chen,&nbsp;Fanyuan Meng,&nbsp;Shi-Jian Su","doi":"10.1002/adom.202402360","DOIUrl":"https://doi.org/10.1002/adom.202402360","url":null,"abstract":"<p>Lead-based perovskite light-emitting diodes (PeLEDs) is gaining significant attention for their outstanding optoelectronic properties. However, the intrinsic lead toxicity in these materials presents serious environmental and health risks, limiting their further development. Here, highly efficient zinc-lead alloy quasi-2D perovskites are developed through Zn<sup>2+</sup> substitution and additive engineering. The Zn<sup>2+</sup> substitution improves tolerance factors, increases radiative recombination rates, and suppresses nonradiative recombination, thereby enhancing stability. Additionally, [bis(4-methoxyphenyl) phosphinyloxy]carbamic acid <i>tert</i>-butyl ester (BPCA) additive effectively passivates bromine vacancy defects and improves film quality. The successful Zn<sup>2+</sup> substitution and additive passivation strategy results in a significantly increased photoluminescence quantum yield from 4.3 to 85.6%. Consequently, high-performance zinc-lead alloy green PeLEDs are achieved with a maximum current efficiency of 54.35 cd A<sup>−1</sup> and a peak external quantum efficiency of 22.49%, representing the highest performance among green PeLEDs with partial lead substitution. Moreover, the T<sub>50</sub> lifetime of Zn-Lead alloy PeLEDs is ≈8.9 times longer than that of the pristine PeLEDs. The approach not only mitigates lead toxicity but also improves device efficiency and stability, representing a significant advancement toward safer and more sustainable perovskite-based optoelectronic devices.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 7","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信