RADAR: Raman Spectral Analysis Using Deep Learning for Artifact Removal (Advanced Optical Materials 25/2025)

IF 7.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Joel Sjöberg, Nicoleta Siminea, Andrei Păun, Adrian Lita, Mioara Larion, Ion Petre
{"title":"RADAR: Raman Spectral Analysis Using Deep Learning for Artifact Removal (Advanced Optical Materials 25/2025)","authors":"Joel Sjöberg,&nbsp;Nicoleta Siminea,&nbsp;Andrei Păun,&nbsp;Adrian Lita,&nbsp;Mioara Larion,&nbsp;Ion Petre","doi":"10.1002/adom.70254","DOIUrl":null,"url":null,"abstract":"<p><b>Raman Spectroscopy</b></p><p>In article 10.1002/adom.202500736, Ion Petre and co-workers introduce RADAR, two lightweight deep learning models that simultaneously denoise and correct Raman spectra, reducing data acquisition time by up to 90% while preserving signal integrity. By streamlining artifact removal, RADAR enhances the speed, accuracy, and usability of Raman spectroscopy across diverse applications in materials science, biomedical research, and beyond.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 25","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adom.70254","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adom.70254","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Raman Spectroscopy

In article 10.1002/adom.202500736, Ion Petre and co-workers introduce RADAR, two lightweight deep learning models that simultaneously denoise and correct Raman spectra, reducing data acquisition time by up to 90% while preserving signal integrity. By streamlining artifact removal, RADAR enhances the speed, accuracy, and usability of Raman spectroscopy across diverse applications in materials science, biomedical research, and beyond.

Abstract Image

Abstract Image

Abstract Image

RADAR:利用深度学习进行伪影去除的拉曼光谱分析(Advanced Optical Materials 25/2025)
拉曼光谱[j] .文献10.1002/adom。202500736, Ion Petre及其同事介绍了RADAR,这是两种轻量级深度学习模型,可同时对拉曼光谱进行降噪和校正,在保持信号完整性的同时将数据采集时间缩短了90%。通过简化工件去除,RADAR提高了拉曼光谱在材料科学,生物医学研究等各种应用中的速度,准确性和可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信