Advanced Optical Materials最新文献

筛选
英文 中文
Recent Advances in Grating Coupled Surface Plasmon Resonance Technology (Advanced Optical Materials 34/2024) 光栅耦合表面等离子体共振技术研究进展(Advanced Optical Materials 34/2024)
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2024-12-03 DOI: 10.1002/adom.202470110
Divagar Murugan, Marcel Tintelott, Madaboosi S. Narayanan, Xuan-Thang Vu, Tetiana Kurkina, César Rodriguez-Emmenegger, Ulrich Schwaneberg, Jakub Dostalek, Sven Ingebrandt, Vivek Pachauri
{"title":"Recent Advances in Grating Coupled Surface Plasmon Resonance Technology (Advanced Optical Materials 34/2024)","authors":"Divagar Murugan,&nbsp;Marcel Tintelott,&nbsp;Madaboosi S. Narayanan,&nbsp;Xuan-Thang Vu,&nbsp;Tetiana Kurkina,&nbsp;César Rodriguez-Emmenegger,&nbsp;Ulrich Schwaneberg,&nbsp;Jakub Dostalek,&nbsp;Sven Ingebrandt,&nbsp;Vivek Pachauri","doi":"10.1002/adom.202470110","DOIUrl":"https://doi.org/10.1002/adom.202470110","url":null,"abstract":"<p><b>Grating Coupled Surface Plasmon Resonance Technology</b></p><p>The Review by Vivek Pachauri and co-workers (see article number 2401862) delves into the core principles, manufacturing processes, and cutting-edge developments in Grating-coupled Surface Plasmon Resonance (GCSPR). Enhancements in nanofabrication techniques, including roll-to-roll nanoimprint technology, have made scalable and precise on-chip sensor platforms feasible. Innovative experimental setups, incorporation of novel materials, and machine learning-driven data analysis are elevating sensitivity and standardization, critical for clinical adoption, and aligning with the latest IoT healthcare trends. [Image credit: Hocine Bahri and Divagar Murugan, RWTH Aachen.]\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 34","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202470110","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142762249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aqueous Afterglow Dispersion Enabling On-Site Ratiometric Sensing of Mercury Ions (Advanced Optical Materials 34/2024) 水余辉色散实现汞离子的现场比例传感(Advanced Optical Materials 34/2024)
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2024-12-03 DOI: 10.1002/adom.202470111
Minjuan Cai, Wuzhen Luo, Feiming Li, Shunyou Cai, Guangqiang Yin, Tao Chen, Zhixiong Cai
{"title":"Aqueous Afterglow Dispersion Enabling On-Site Ratiometric Sensing of Mercury Ions (Advanced Optical Materials 34/2024)","authors":"Minjuan Cai,&nbsp;Wuzhen Luo,&nbsp;Feiming Li,&nbsp;Shunyou Cai,&nbsp;Guangqiang Yin,&nbsp;Tao Chen,&nbsp;Zhixiong Cai","doi":"10.1002/adom.202470111","DOIUrl":"https://doi.org/10.1002/adom.202470111","url":null,"abstract":"<p><b>Aqueous Afterglow Dispersion Enabling Mercury Ion Sensing</b></p><p>This cover image illustrates the application of an aqueous-phase phosphorescent probe for the detection of heavy metal ions. The carbon dots (CDs)@hydrogen-bonded organic frameworks (HOFs) composite material functions as the energy donor, while a rhodamine B derivative acts as metal ions probe and the energy acceptor, facilitating the phosphorescent detection of mercury ions in aqueous environments via a Förster energy transfer mechanism. This approach highlights the potential of aqueous phosphorescent materials for environmental monitoring and analytical applications. For further details, see article number 2401509 by Guangqiang Yin, Tao Chen, Zhixiong Cai, and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 34","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202470111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142762250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Diamond Heater-Thermometer Microsensor for Measuring Localized Thermal Conductivity: A Case Study in Gelatin Hydrogel (Advanced Optical Materials 34/2024) 用于测量局部热导率的金刚石加热器-温度计微传感器:明胶水凝胶的案例研究(Advanced Optical Materials 34/2024)
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2024-12-03 DOI: 10.1002/adom.202470109
Linjie Ma, Jiahua Zhang, Zheng Hao, Jixiang Jing, Tongtong Zhang, Yuan Lin, Zhiqin Chu
{"title":"A Diamond Heater-Thermometer Microsensor for Measuring Localized Thermal Conductivity: A Case Study in Gelatin Hydrogel\t(Advanced Optical Materials 34/2024)","authors":"Linjie Ma,&nbsp;Jiahua Zhang,&nbsp;Zheng Hao,&nbsp;Jixiang Jing,&nbsp;Tongtong Zhang,&nbsp;Yuan Lin,&nbsp;Zhiqin Chu","doi":"10.1002/adom.202470109","DOIUrl":"https://doi.org/10.1002/adom.202470109","url":null,"abstract":"<p><b>Localized Thermal Conductivity Measurement</b></p><p>The cover image shows a hybrid diamond–silicon pillar micro-sensor with a decoupled all-optical temperature control and readout method for localized thermal conductivity measurement in hydrogels. The decoupling of the heating and sensing lasers can minimize the crosstalk between them. Thermal conductivity is measured using a steady-state thermometry strategy based on the laser heating effect. This novel sensor and sensing strategy demonstrate significant advancements in micro-scale thermometry. For further details, see article number 2401232 by Zhiqin Chu and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 34","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202470109","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142762310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead: (Advanced Optical Materials 34/2024) 报头:(Advanced Optical Materials 34/2024)
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2024-12-03 DOI: 10.1002/adom.202470112
{"title":"Masthead: (Advanced Optical Materials 34/2024)","authors":"","doi":"10.1002/adom.202470112","DOIUrl":"https://doi.org/10.1002/adom.202470112","url":null,"abstract":"","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 34","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202470112","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142762485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spin-Orbit Coupled Trapped Exciton–Polariton Condensates in Perovskite Microcavity 钙钛矿微腔中自旋-轨道耦合捕获激子-极化子凝聚
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2024-11-28 DOI: 10.1002/adom.202401839
Qiuyu Shang, Xinyi Deng, Jiepeng Song, Yin Liang, Heng Lu, Yiyang Gong, Shulin Chen, Peng Gao, Xiaowei Zhan, Xinfeng Liu, Qing Zhang
{"title":"Spin-Orbit Coupled Trapped Exciton–Polariton Condensates in Perovskite Microcavity","authors":"Qiuyu Shang,&nbsp;Xinyi Deng,&nbsp;Jiepeng Song,&nbsp;Yin Liang,&nbsp;Heng Lu,&nbsp;Yiyang Gong,&nbsp;Shulin Chen,&nbsp;Peng Gao,&nbsp;Xiaowei Zhan,&nbsp;Xinfeng Liu,&nbsp;Qing Zhang","doi":"10.1002/adom.202401839","DOIUrl":"https://doi.org/10.1002/adom.202401839","url":null,"abstract":"<p>Lead halide perovskites exhibit superior properties compared to classical III–V semiconductor quantum wells for room-temperature polaritonic applications, particularly owing to the significant crystalline anisotropy. This anisotropy results in a sizeable split in condensate energy, which can profoundly influence polariton interactions and spin relaxation pathways. Besides, trapped exciton-polariton (TEP) exhibits a quantized energy landscape, which is essential for modulating polaritonic logical circuits. Herein, spin-orbit coupled TEP lasing is demonstrated in birefringent perovskite. Cascade condensate processes between orthogonally polarized polariton branches happen considering the dominance of reservoir exciton–polariton or polariton–polariton scattering within each stage. Such condensation adequately is verified via the input-output “S” curve, the narrowed linewidth, the energy blueshift, and the real space spatial coherence of the orthogonally polarized modes. This trapped anisotropic condensate holds great promise for room-temperature polaritonic and spintronics.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 36","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142869249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precise Regulation of Excited-State Intramolecular Proton-Transfer Materials for High-Efficiency Monochromatic and White-emitting OLEDs 高效单色和白光oled分子内激发态质子转移材料的精确调控
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2024-11-28 DOI: 10.1002/adom.202401684
Tao Yang, Qi Wei, Xinchen Jiang, Yujian Liu, Zhiqiang Gao, Baoxiu Mi, Quli Fan, Yan Qian
{"title":"Precise Regulation of Excited-State Intramolecular Proton-Transfer Materials for High-Efficiency Monochromatic and White-emitting OLEDs","authors":"Tao Yang,&nbsp;Qi Wei,&nbsp;Xinchen Jiang,&nbsp;Yujian Liu,&nbsp;Zhiqiang Gao,&nbsp;Baoxiu Mi,&nbsp;Quli Fan,&nbsp;Yan Qian","doi":"10.1002/adom.202401684","DOIUrl":"https://doi.org/10.1002/adom.202401684","url":null,"abstract":"<p>Conventional fluorescent WOLEDs generate white light by incomplete energy transfer but face challenges in precisely controlling energy transfer and improving device efficiency due to the maximal utilization of 25% singlet excitons. In this study, two newly developed excited-state intramolecular proton transfer (ESIPT) fluorophores emit orange and white light. These fluorophores utilize excitons efficiently (70–88%) via high-level reverse intersystem crossing (hRISC) exclusively in the keto form and in both isomers (enol/keto), respectively. The white emitter, with comparable dual emissions, enables the fabrication of color-stable cold-white single-emitter OLED with a CRI of 74 and maximum external quantum efficiency (EQE) of up to 5.60%. The orange emitter, when combined with a sky-blue TADF fluorophore, creates non-energy-transferred single-emitting-layer (SML) high-performance cold- and pure-white WOLEDs with CIE coordinates of (0.26, 0.35) and (0.32, 0.32), and maximum EQEs of 13.34% and 9.66%, respectively. Importantly, these complementary-color WOLEDs demonstrate high reproducibility, offering advantages for industrial batch fabrication. Thus, this research presents a route to achieve cost-effective mass production of simple-structured and high-efficiency WOLEDs.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 36","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142869250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extrinsic Dual-Mode Self-Trapped Excitons Emission With Highly Linear Polarization From Cu3PS3Se Cu3PS3Se高线性极化的外源双模自困激子发射
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2024-11-28 DOI: 10.1002/adom.202401919
Yingjie Ai, Guoting Li, Wei Chen, Renjie Zhao, Wenjing Huang, Nenghui Zhang, Xuying Zhong, Wei Dou, Yangbo Zhou, Yaxin Zhai, Dongsheng Tang, Weichang Zhou
{"title":"Extrinsic Dual-Mode Self-Trapped Excitons Emission With Highly Linear Polarization From Cu3PS3Se","authors":"Yingjie Ai,&nbsp;Guoting Li,&nbsp;Wei Chen,&nbsp;Renjie Zhao,&nbsp;Wenjing Huang,&nbsp;Nenghui Zhang,&nbsp;Xuying Zhong,&nbsp;Wei Dou,&nbsp;Yangbo Zhou,&nbsp;Yaxin Zhai,&nbsp;Dongsheng Tang,&nbsp;Weichang Zhou","doi":"10.1002/adom.202401919","DOIUrl":"https://doi.org/10.1002/adom.202401919","url":null,"abstract":"<p>Benefiting from the potential application as a single component white light source, the broadband self-trapped excitons (STEs) emission in low-dimensional metal halides has attracted wide attention. However, such broadband STE emission in metal thio- and seleno-phosphates is scarce, and the formation mechanism is ambiguous. Herein, the broadband dual-mode (red and near-infrared) light emission and their linear polarization in orthorhombic Cu<sub>3</sub>PS<sub>3</sub>Se crystals are reported. The absorption and photoluminescence (PL) spectra show a large Stokes shift of 0.43/0.76 eV and a broad emission wavelength range of ≈200 nm, exhibiting the significant STEs feature. Transient absorption spectroscopy (TAS) reveals a broad positive photo-induced absorption, further proving the formation of STE states. These STEs exhibit a highly linear polarized emission behavior with a degree of polarization up to 0.51. According to the excitation angles dependent polarized PL and Raman spectroscopy measurements, it is assigned that both the anisotropic optical absorption and electron-phonon interaction contribute to the STEs emission polarization in Cu<sub>3</sub>PS<sub>3</sub>Se. These findings not only extend the STEs from metal halides to metal thio/seleno-phosphates but also offer the potential prospects for novel optical polarizers, polarization-sensitive photodetectors, optical and optoelectronic synaptic devices application of anisotropic STEs emission.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 36","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142869248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photothermally-Engineered Crystallization of GAP-Se Bulk Chalcogenide Nanocomposites toward the Realization of 3D Gradient Refractive Index Profiles 面向三维梯度折射率曲线的GAP-Se块状硫系纳米复合材料的光热工程结晶
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2024-11-26 DOI: 10.1002/adom.202401552
Roberto Alvarez, Anna Zachariou, Ilya Mingareev, Thomas J. Loretz, Rashi Sharma, Justin Cook, Cesar Blanco, Martin C. Richardson, Andrew Howe, Patrick E. Lynch, Gil. B. J. Sop Tagne, Kun Wang, Jake Klucinec, Myungkoo Kang, Kathleen A. Richardson
{"title":"Photothermally-Engineered Crystallization of GAP-Se Bulk Chalcogenide Nanocomposites toward the Realization of 3D Gradient Refractive Index Profiles","authors":"Roberto Alvarez,&nbsp;Anna Zachariou,&nbsp;Ilya Mingareev,&nbsp;Thomas J. Loretz,&nbsp;Rashi Sharma,&nbsp;Justin Cook,&nbsp;Cesar Blanco,&nbsp;Martin C. Richardson,&nbsp;Andrew Howe,&nbsp;Patrick E. Lynch,&nbsp;Gil. B. J. Sop Tagne,&nbsp;Kun Wang,&nbsp;Jake Klucinec,&nbsp;Myungkoo Kang,&nbsp;Kathleen A. Richardson","doi":"10.1002/adom.202401552","DOIUrl":"https://doi.org/10.1002/adom.202401552","url":null,"abstract":"<p>Tailorability of a medium's optical properties, specifically refractive index and dispersion, is key to enabling compact optical designs. Chalcogenide glasses (ChGs) are widely used for infrared (IR) imaging applications, and the development of gradient refractive index (GRIN) optics. This work extends efforts to create and characterize 3D GRIN profiles in bulk multi-component Ge-As-Pb-Se (GAP-Se) ChGs through spatially selective conversion of commercial glass to glass ceramic. This work extends prior efforts on bulk and film lab-scale glass media, to that of a commercially produced material with improved optical homogeneity. Laser-induced crystallization upon heat treatment results in the formation of high index Pb-containing crystals that contribute to an increase in the nanocomposite's resulting effective refractive index, n<sub>eff</sub>. The material's induced crystallinity imparted via laser exposure and heat treatment using metrology tools such as refractometry, X-ray diffraction, FTIR, and TEM are studied. The resulting material response is quantified which is shown to be modulated via laser dose in both lateral and for the first time, axial directions enabling the first demonstration of a true, 3D GRIN profile. By comparing these outcomes to prior radial GRIN structures, the promise of these media as candidate materials for infrared systems.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 36","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142869117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Wireless-Driven Electric Responsive Long-Lived Room Temperature Phosphorescent Switching Device (Advanced Optical Materials 33/2024) 无线驱动的电响应长寿命室温磷光开关器件(先进光学材料 33/2024)
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2024-11-24 DOI: 10.1002/adom.202470106
Yan Yan, Yuyang Wang, Jinbei Wei, Jinbao Zhu, Ruipeng Shen, Yuliang Feng, Weiran Zhang, Xuesong Liu, Pengfei Wang, Hualiang Wang, Yu-Mo Zhang, Sean Xiao-An Zhang, Tingting Lin
{"title":"A Wireless-Driven Electric Responsive Long-Lived Room Temperature Phosphorescent Switching Device (Advanced Optical Materials 33/2024)","authors":"Yan Yan,&nbsp;Yuyang Wang,&nbsp;Jinbei Wei,&nbsp;Jinbao Zhu,&nbsp;Ruipeng Shen,&nbsp;Yuliang Feng,&nbsp;Weiran Zhang,&nbsp;Xuesong Liu,&nbsp;Pengfei Wang,&nbsp;Hualiang Wang,&nbsp;Yu-Mo Zhang,&nbsp;Sean Xiao-An Zhang,&nbsp;Tingting Lin","doi":"10.1002/adom.202470106","DOIUrl":"https://doi.org/10.1002/adom.202470106","url":null,"abstract":"<p><b>Electrically Controllable Dual-State Förster Energy Resonance Transfer</b></p><p>An electrically controllable long-lived room-temperature phosphorescence (RTP) switch was developed by Yu-Mo Zhang, Tingting Lin, and co-workers (see article number 2402313). The left doll symbolizes an organic phosphorescent material. The right doll symbolizes a spectrally matched dye, and the flower below symbolizes an electro-acid. Upon wireless electrical stimulation, the electro-acid undergoes redox-induced conformational switching of the dyes, which in turn undergoes a dual-state Förster energy resonance transfer process with RTP, exhibiting multiple switching properties.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 33","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202470106","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142708300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead: (Advanced Optical Materials 33/2024) 刊头:(先进光学材料 33/2024)
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2024-11-24 DOI: 10.1002/adom.202470108
{"title":"Masthead: (Advanced Optical Materials 33/2024)","authors":"","doi":"10.1002/adom.202470108","DOIUrl":"https://doi.org/10.1002/adom.202470108","url":null,"abstract":"","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 33","pages":""},"PeriodicalIF":8.0,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202470108","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142708264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信