Advanced Optical Materials最新文献

筛选
英文 中文
On-Chip Metasurface-Mediated MoTe2 Photodetector with Electrically Tunable Polarization-Sensitivity
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2025-03-04 DOI: 10.1002/adom.202402668
Ruizhi Li, Xinlei Zhang, Fan Zhong, Yuanfang Yu, Peidong Yan, Dangyuan Lei, Junpeng Lu, Zhenhua Ni
{"title":"On-Chip Metasurface-Mediated MoTe2 Photodetector with Electrically Tunable Polarization-Sensitivity","authors":"Ruizhi Li,&nbsp;Xinlei Zhang,&nbsp;Fan Zhong,&nbsp;Yuanfang Yu,&nbsp;Peidong Yan,&nbsp;Dangyuan Lei,&nbsp;Junpeng Lu,&nbsp;Zhenhua Ni","doi":"10.1002/adom.202402668","DOIUrl":"https://doi.org/10.1002/adom.202402668","url":null,"abstract":"<p>Photodetectors with tunable polarization sensitivity play a significant role in decoding signals in optical communications, extracting polarization-encrypted information, and the environmental monitoring of polarization variations. Metasurfaces are widely used in polarized photodetectors, while the responses for different polarization incidences follow a determinable and consistent correspondence. In this paper, an electrically tunable polarization photodetector composed of MoTe<sub>2</sub> and gold metasurface is proposed for on-chip polarization-sensitive near-infrared (900–1200 nm) detection. Through contact engineering and electro-tuning, highly-tunable Schottky barriers are achieved. This enables the modulation of photoelectric conversion via the excitation of surface plasmon polaritons, which in turn allows for continuous adjustment on the degree of linear polarization of a settled metasurface ranging from 0.2 to an ultimate value of 1.0. The results outline a paradigm to achieve a polarization-dependent electrically tunable response, which is promising for on-chip information processing in integrated optics.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 9","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143688786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of Novel Iridium(III) Complex-Based Photofunctional Materials Using Excited-State Descriptors (Advanced Optical Materials 7/2025)
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2025-03-04 DOI: 10.1002/adom.202570063
Chu Wang, Lin Liu, Wei Sun, Juanjuan Wang, Qing-Kai Li, Kai Feng, Bin Liao, Wei-Hai Fang, Xuebo Chen
{"title":"Discovery of Novel Iridium(III) Complex-Based Photofunctional Materials Using Excited-State Descriptors (Advanced Optical Materials 7/2025)","authors":"Chu Wang,&nbsp;Lin Liu,&nbsp;Wei Sun,&nbsp;Juanjuan Wang,&nbsp;Qing-Kai Li,&nbsp;Kai Feng,&nbsp;Bin Liao,&nbsp;Wei-Hai Fang,&nbsp;Xuebo Chen","doi":"10.1002/adom.202570063","DOIUrl":"https://doi.org/10.1002/adom.202570063","url":null,"abstract":"<p><b>Novel Iridium(III) Complex-Based Photofunctional Materials Discovery</b></p><p>Designing Ir(III) complex-based photofunctional materials for OLEDs and photocatalysis presents significant challenges. In article 2402317, Bin Liao, Xuebo Chen, and co-workers propose a three-step, data-driven workflow that leverages machine learning, time-dependent density functional theory (TDDFT), and complete active space perturbation theory (CASPT2) coupled with complete active space self-consistent field (CASSCF) methods. By incorporating critical excited-state descriptors, a promising uracil-based Ir(III) complex is identified from the self-constructed database.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 7","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202570063","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143554674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-temperature X-ray Time-lapse Imaging Based on the Improved Scintillating Performance of Na5Lu9F32:Tb3+ Glass Ceramics
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2025-02-28 DOI: 10.1002/adom.202402496
Rongfei Wei, Ying Chen, Li Wang, Junwei Pan, Xiangling Tian, Fangfang Hu, Hai Guo
{"title":"High-temperature X-ray Time-lapse Imaging Based on the Improved Scintillating Performance of Na5Lu9F32:Tb3+ Glass Ceramics","authors":"Rongfei Wei,&nbsp;Ying Chen,&nbsp;Li Wang,&nbsp;Junwei Pan,&nbsp;Xiangling Tian,&nbsp;Fangfang Hu,&nbsp;Hai Guo","doi":"10.1002/adom.202402496","DOIUrl":"https://doi.org/10.1002/adom.202402496","url":null,"abstract":"<p>Scintillating materials have advanced significantly with scientific and technological progress. However, developing scintillators capable of time-lapse imaging under extreme conditions, such as high-temperature environments, remains a formidable challenge. Herein, Tb<sup>3+</sup>-doped oxyfluoride glass ceramics (GCs) with exceptional scintillation performance and X-ray-induced persistent luminescence (PersL) are successfully fabricated. Remarkably, the luminescent intensities under ultraviolet and X-ray excitation are significantly enhanced by optimizing the Al<sub>2</sub>O<sub>3</sub> content and inducing the precipitation of Na<sub>5</sub>Lu<sub>9</sub>F<sub>32</sub> nanocrystals. The integral X-ray-excited luminescence intensity reaches 219.3% of that of Bi<sub>4</sub>Ge<sub>3</sub>O<sub>12</sub>. The GCs exhibit robust irradiation resistance even under high-power X-ray exposure. Real-time imaging based on GCs demonstrates a spatial resolution of 18 lp mm<sup>−1</sup>. Furthermore, the GCs display pronounced thermally stimulated PersL following X-ray excitation, attributed to the generation of Frenkel defects. This behavior facilitates the development of a time-lapse imaging technique with high-temperature visibility after X-ray irradiation, achieving an impressive spatial resolution of 14 lp mm<sup>−1</sup>, and allowing X-ray image storage for over 168 h. These findings underscore the immense potential of GC scintillators for advanced X-ray imaging applications, particularly in harsh environments.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 8","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brilliant and Angular-Independent Photonic Balls Using High-Refractive-Index Inorganic-Polymer Hybrid Materials
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2025-02-28 DOI: 10.1002/adom.202402863
Yangnan Jiang, Ayano Shirai, Michinari Kohri, Ryosuke Ohnuki, Shinya Yoshioka, Tetsuya Yamamoto, Yukikazu Takeoka
{"title":"Brilliant and Angular-Independent Photonic Balls Using High-Refractive-Index Inorganic-Polymer Hybrid Materials","authors":"Yangnan Jiang,&nbsp;Ayano Shirai,&nbsp;Michinari Kohri,&nbsp;Ryosuke Ohnuki,&nbsp;Shinya Yoshioka,&nbsp;Tetsuya Yamamoto,&nbsp;Yukikazu Takeoka","doi":"10.1002/adom.202402863","DOIUrl":"https://doi.org/10.1002/adom.202402863","url":null,"abstract":"<p>In the modern era, structural color materials are regarded as safe and promising alternatives to colorants that contain harmful components. However, developing structural color materials that exhibit vivid colors with minimal angular dependence is crucial for their practical application. In this study, spherical colloidal crystals (photonic balls) with bright colors and effectively suppressed angular dependence are developed using monodisperse high refractive index CeO₂ particles. To fabricate these photonic balls, CeO₂@PDA particles are synthesized by coating CeO₂ particles with polydopamine (PDA), a black component. The light-absorbing PDA coating on each particle uniformly reduces the multiple scattering of light to form a black background, allowing the CeO₂@PDA photonic balls to exhibit brilliant structural colors. Compared to SiO₂ particles photonic balls, which are widely studied in previous research, CeO₂@PDA photonic balls have a significantly reduced angular dependence of structural color hue due to their composition of materials with a higher refractive index. Additionally, the CeO₂@PDA photonic balls are heat-treated in a nitrogen atmosphere, transforming the polymer component on the particle surface into a black carbonaceous material with a higher refractive index. This process further reduces the angular dependence of structure color hues observed from the photonic balls and improves color vibrancy.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 9","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202402863","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143690244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted Imaging of Estrogen Receptor-Positive Cancer Cells Using Fluorescent Estradiol Probes
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2025-02-28 DOI: 10.1002/adom.202402758
Shabnam Mansuri, Subhadra Ojha, Sriram Kanvah
{"title":"Targeted Imaging of Estrogen Receptor-Positive Cancer Cells Using Fluorescent Estradiol Probes","authors":"Shabnam Mansuri,&nbsp;Subhadra Ojha,&nbsp;Sriram Kanvah","doi":"10.1002/adom.202402758","DOIUrl":"https://doi.org/10.1002/adom.202402758","url":null,"abstract":"<p>Breast cancer remains the second most common cause of cancer-related deaths in women worldwide, with ≈70% of cases linked to the overexpression of Estrogen Receptor (ERα). Existing imaging tools often fail to reliably differentiate between ER-positive and ER-negative cancer cells. To address this limitation, two novel fluorescent probes, <b>E2N</b> and <b>E2R</b>, are synthesized by conjugating estradiol to styryl and rhodamine-based fluorophores using click chemistry. These probes are characterized by their photophysical properties, biocompatibility, and selective targeting of ER-positive cells. Cellular uptake studies demonstrate preferential internalization of <b>E2N</b> and <b>E2R</b> in ER-positive MCF-7, ZR-75-1, and T-47D cells, with minimal uptake in ER-negative MDA-MB-231, MDA-MB-468, and healthy COS-7 and NIH-3T3 cell lines. Kinetic studies reveal efficient and rapid uptake of <b>E2N</b> in ER-positive MCF-7 cells, while mechanistic investigations identified clathrin-mediated endocytosis as the receptor-mediated pathway for both probes. Localization studies further confirm their mitochondrial specificity in ER-positive cells, with <b>E2R</b> displaying higher mitochondrial selectivity. These findings underscore the potential of <b>E2N</b> and <b>E2R</b> as powerful tools for distinguishing ER-positive from ER-negative breast cancer cells. Their receptor-mediated targeting and precise imaging capabilities make them promising candidates for advancing breast cancer diagnostics and enabling more targeted therapeutic strategies.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 8","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hierarchical Microspheres-Based Composite Materials with TiO2-Coated SiO2 Combined with BaSO4 or PNIPAM for Radiative Cooling
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2025-02-27 DOI: 10.1002/adom.202402846
Jiefeng Li, Ming Fu, Heling Zhang, Chenhui Wei, Dawei He, Yongsheng Wang
{"title":"Hierarchical Microspheres-Based Composite Materials with TiO2-Coated SiO2 Combined with BaSO4 or PNIPAM for Radiative Cooling","authors":"Jiefeng Li,&nbsp;Ming Fu,&nbsp;Heling Zhang,&nbsp;Chenhui Wei,&nbsp;Dawei He,&nbsp;Yongsheng Wang","doi":"10.1002/adom.202402846","DOIUrl":"https://doi.org/10.1002/adom.202402846","url":null,"abstract":"<p>Microspheres dispersed in composites exhibit excellent infrared emissivity for radiative cooling applications, which reflect sunlight and passively dissipate heat into space without electricity. In this study, hierarchical microspheres (HMs) with a two-tier structure, composed of SiO<sub>2</sub>, TiO<sub>2</sub>-coated SiO<sub>2</sub>, BaSO<sub>4</sub>, or PNIPAM, are incorporated into PDMS-based composites. These microspheres feature larger spheres assembled from submicrometer-scale nanoparticles and are fabricated via microfluidics to enhance radiative cooling performance. SiO<sub>2</sub> HMs not only boost visible light reflection and exhibit structural color through a photonic stop band but also achieve an average emissivity of 97.55% in the atmospheric window. Both experimental and simulated results show that HMs enhance the emissivity performance of the composite material compared with solid SiO<sub>2</sub> microspheres of the same diameter. Additionally, applying TiO<sub>2</sub> coating to SiO<sub>2</sub> HMs further increases the overall emissivity to 98.05%. Incorporating BaSO<sub>4</sub> HMs also increased the average visible reflectivity to 96.56%, while maintaining superior infrared emissivity at 97.58%. The inclusion of PNIPAM spheres enabled temperature-responsive transmissivity, with the composite materials containing PNIPAM and SiO<sub>2</sub> HMs preserving high infrared emissivity in the atmospheric window. These HM structures exhibit excellent solar reflectivity and thermal emission, making them effective for radiative cooling.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 9","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143690285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benzothiadiazole-Based Dichroic Dyes: Novel Approaches for Electrically Tunable Liquid Crystal Smart Windows
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2025-02-27 DOI: 10.1002/adom.202402687
Danyang Wan, Yongchi Ma, Juanli Li, Minggang Hu, Lexuan Liang, Lingchao Mo, Zhaoyi Che, Chen Tang, Kang Zhao, Hua Jiao, Jian Li
{"title":"Benzothiadiazole-Based Dichroic Dyes: Novel Approaches for Electrically Tunable Liquid Crystal Smart Windows","authors":"Danyang Wan,&nbsp;Yongchi Ma,&nbsp;Juanli Li,&nbsp;Minggang Hu,&nbsp;Lexuan Liang,&nbsp;Lingchao Mo,&nbsp;Zhaoyi Che,&nbsp;Chen Tang,&nbsp;Kang Zhao,&nbsp;Hua Jiao,&nbsp;Jian Li","doi":"10.1002/adom.202402687","DOIUrl":"https://doi.org/10.1002/adom.202402687","url":null,"abstract":"<p>A series of benzothiadiazole (BT)-based dichroic dyes with donor–acceptor–donor (D–A–D) molecular frameworks is designed and synthesized, exhibiting absorption spectra that cover the visible light region and are tunable through molecular modifications. Most of the newly synthesized dyes show high dichroic ratios and order parameters, ensuring strong optical anisotropy and good alignment within the liquid crystal host mixture. The performance of individual dyes in smart window applications is evaluated, with transmittance changes observed under dynamic electric fields, demonstrating their potential for use in electrically tunable smart windows. To achieve full visible-light modulation, the combination of complementary absorption dyes is screened and an optimized mixture Mix-7 is obtained, which not only achieves full visible-light absorption coverage but also demonstrates smooth and dynamic transmittance modulation under varying voltages. Finally, a prototype smart window filled with Mix-7 is fabricated to validate the continuous tunability of dye-doped liquid crystal-based systems. Additionally, further introduction of a polarizer film significantly reduces the transmittance of the demo, especially in the OFF state which presents an almost completely dark state, highlighting the potential for automotive smart window applications.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 8","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photon-Engineered All-Day Radiative Warming Utilizing Solar and Atmospheric Energy
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2025-02-27 DOI: 10.1002/adom.202402432
Yining Zhu, Huanzheng Zhu, Rongxuan Zhu, Yiwei Zhou, Min Qiu, Qiang Li
{"title":"Photon-Engineered All-Day Radiative Warming Utilizing Solar and Atmospheric Energy","authors":"Yining Zhu,&nbsp;Huanzheng Zhu,&nbsp;Rongxuan Zhu,&nbsp;Yiwei Zhou,&nbsp;Min Qiu,&nbsp;Qiang Li","doi":"10.1002/adom.202402432","DOIUrl":"https://doi.org/10.1002/adom.202402432","url":null,"abstract":"<p>Maintaining optimal temperatures continuously is crucial for various applications, yet existing methods relying on selective solar absorbers fail to provide continuous warmth throughout the entire day. A photon-engineered flexible film is proposed for all-day radiative warming, integrating multiple functional layers to regulate radiation across different spectral bands. This design enhances the heat absorption efficiency of solar and atmospheric energy (α<sub>0.3−2.5</sub> <sub>µm</sub> = 0.95, α<sub>5−8</sub> <sub>µm</sub> = 0.75, α<sub>14−16</sub> <sub>µm</sub> = 0.84) while minimizing outward radiation (ɛ<sub>8-14</sub> <sub>µm</sub> = 0.13). Experimental validation demonstrates superior performance over traditional low-emissivity warming blankets under varying environmental conditions, achieving 9.4 °C higher temperature during the day and 1.4 °C higher at night. Moreover, the film's remarkable warming capability highlights its significant application value in anti-condensation. This underscores its potential as a sustainable and effective thermal management solution for carbon neutrality.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 8","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bio-Inspired Bright Non-Iridescent Structurally Colored Nanopigments Featuring Additive Color Mixing Performance (Advanced Optical Materials 6/2025)
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2025-02-24 DOI: 10.1002/adom.202570059
Wentao Wang, Wenzhen Zhang, Yicheng Zhou, Yuyuan Yao, Bingtao Tang, Liming Ding
{"title":"Bio-Inspired Bright Non-Iridescent Structurally Colored Nanopigments Featuring Additive Color Mixing Performance (Advanced Optical Materials 6/2025)","authors":"Wentao Wang,&nbsp;Wenzhen Zhang,&nbsp;Yicheng Zhou,&nbsp;Yuyuan Yao,&nbsp;Bingtao Tang,&nbsp;Liming Ding","doi":"10.1002/adom.202570059","DOIUrl":"https://doi.org/10.1002/adom.202570059","url":null,"abstract":"<p><b>Photonic Pigments</b></p><p>Inspired by the Steller's jay, non-iridescent structurally colored nanopigments composed of hollow SiO<sub>2</sub> microspheres with amorphous carbon on the inner wall of the shell and disordered metasurfaces on the shell layer were created. Different from previous studies, each individual microsphere is an independent chromogenic unit and has additive color mixing performance. More details can be found in article 2402324 by Wentao Wang, Liming Ding, and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 6","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202570059","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143475822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Independent and Free Control of Multiple Beams Enabled by Wideband Spin-Decoupled Metasurface (Advanced Optical Materials 6/2025)
IF 8 2区 材料科学
Advanced Optical Materials Pub Date : 2025-02-24 DOI: 10.1002/adom.202570061
Fengxia Li, Xiaohan Yin, Jia-Yuan Yin, Jing-Ya Deng
{"title":"Independent and Free Control of Multiple Beams Enabled by Wideband Spin-Decoupled Metasurface (Advanced Optical Materials 6/2025)","authors":"Fengxia Li,&nbsp;Xiaohan Yin,&nbsp;Jia-Yuan Yin,&nbsp;Jing-Ya Deng","doi":"10.1002/adom.202570061","DOIUrl":"https://doi.org/10.1002/adom.202570061","url":null,"abstract":"<p><b>Spin-Decoupled Metasurface</b></p><p>In article 2401777, Jing-Ya Deng and co-workers propose a spin-decoupled strategy to generate multiple beams based on polarization conversion meta-atom by regulating its cross-polarized components. Combining propagation and PB phases, the deflection angles, polarizations, and topological charges can be independently and freely controlled in wideband, which can be utilized to polarization multiplexing and multichannel meta-devices in communication, imaging, and target detection.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 6","pages":""},"PeriodicalIF":8.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202570061","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143475809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信