On-Chip Control of Electron Emission with an Active Terahertz Metasurface

IF 7.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matej Sebek, Tobias Olaf Buchmann, Peter Uhd Jepsen, Simon Jappe Lange
{"title":"On-Chip Control of Electron Emission with an Active Terahertz Metasurface","authors":"Matej Sebek,&nbsp;Tobias Olaf Buchmann,&nbsp;Peter Uhd Jepsen,&nbsp;Simon Jappe Lange","doi":"10.1002/adom.202500104","DOIUrl":null,"url":null,"abstract":"<p>Terahertz (THz) radiation has emerged as a powerful tool for inducing ultrafast electron emission and controlling electron beams, with applications in photonics and electron microscopy. Here, the first realization of on-chip electron emission control using an active THz metasurface is reported. The device integrates resonant dipole antennas and bias arms on a fused silica substrate, enabling precise modulation of electron trajectories through electrostatic control. Experimental results, supported by particle-in-cell simulations, reveal that electron emission via Fowler–Nordheim tunneling can be dynamically steered by varying the applied bias. A positive bias suppresses emission by attracting electrons to the bias arms, while a negative bias repels them, allowing trajectory control and the emergence of new emission features. Time-of-flight measurements show distinct shifts in electron emission behavior, with strong correlation to bias voltage and THz field strength. This work demonstrates a practical approach to integrating ultrafast electron control into chip-scale systems.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 28","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202500104","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adom.202500104","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Terahertz (THz) radiation has emerged as a powerful tool for inducing ultrafast electron emission and controlling electron beams, with applications in photonics and electron microscopy. Here, the first realization of on-chip electron emission control using an active THz metasurface is reported. The device integrates resonant dipole antennas and bias arms on a fused silica substrate, enabling precise modulation of electron trajectories through electrostatic control. Experimental results, supported by particle-in-cell simulations, reveal that electron emission via Fowler–Nordheim tunneling can be dynamically steered by varying the applied bias. A positive bias suppresses emission by attracting electrons to the bias arms, while a negative bias repels them, allowing trajectory control and the emergence of new emission features. Time-of-flight measurements show distinct shifts in electron emission behavior, with strong correlation to bias voltage and THz field strength. This work demonstrates a practical approach to integrating ultrafast electron control into chip-scale systems.

Abstract Image

有源太赫兹超表面电子发射的片上控制
太赫兹(THz)辐射已成为诱导超快电子发射和控制电子束的有力工具,在光子学和电子显微镜中得到了应用。本文首次报道了利用有源太赫兹超表面实现片上电子发射控制。该装置将谐振偶极子天线和偏置臂集成在熔融硅衬底上,通过静电控制实现电子轨迹的精确调制。实验结果表明,通过改变施加的偏压,可以动态地控制通过Fowler-Nordheim隧道的电子发射。正偏压通过吸引电子到偏压臂来抑制发射,而负偏压则排斥它们,从而允许轨迹控制和新的发射特征的出现。飞行时间测量显示出电子发射行为的明显变化,与偏置电压和太赫兹场强有很强的相关性。这项工作展示了一种将超快电子控制集成到芯片级系统中的实用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信