Ahmed E. Elbakhshwan , Muhammed A. Hassan , Mahmoud A. Kassem , Mohamad T. Araji
{"title":"Thermal comfort-constrained nonlinear operational optimization of a solar-absorption-radiant cooling system","authors":"Ahmed E. Elbakhshwan , Muhammed A. Hassan , Mahmoud A. Kassem , Mohamad T. Araji","doi":"10.1016/j.enconman.2024.119204","DOIUrl":"10.1016/j.enconman.2024.119204","url":null,"abstract":"<div><div>With the increasing demand for sustainable building solutions, especially under extreme weather conditions, there is a growing need for renewable-powered cooling systems that can minimize energy consumption and carbon emissions. Solar-absorption-radiant cooling systems offer a promising alternative to traditional air conditioning systems, but their effectiveness relies on efficient control strategies. This study investigates the optimal control of a solar-absorption-radiant cooling system for a single-story office building using non-linear programming (NLP) to minimize operating costs while maintaining thermal comfort. This is achieved by directly integrating the building model and thermal comfort calculations within the optimization procedure. By incorporating a solar collector, storage tank, assisting boiler, and absorption chiller, the system achieves a solar fraction of 0.8, minimizing daily operating costs to 2.11 USD and carbon emissions to ∼ 39.1 <span><math><mrow><mi>k</mi><msub><mi>g</mi><mrow><mi>C</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></msub></mrow></math></span>. The system maintains an average PMV of 0.14, an operative temperature of 25.63 °C, and a coefficient of performance of 0.72. The study also explores the impact of varying thermal comfort constraints, ventilation rates, and inlet air temperatures on system performance. Stricter comfort constraints (PMV=-0.2 to 0.2) increase costs and emissions by 30.96 % and 37.5 % respectively, due to increased reliance on the natural gas boiler. Doubling the ventilation rate based on fresh outdoor air increases daily costs and emissions by 19 % and 22.6 % respectively. Conversely, utilizing a supplementary system to supply ventilation air at 25 °C significantly reduces costs and emissions by 26.2 % and 25.4 % respectively, and increases the solar fraction to 0.92. Compared to a conventional system powered solely by a natural gas boiler, the solar-powered system achieves substantial cost savings (45.9 %), reduced carbon emissions (52.5 %), and improved thermal comfort, highlighting the potential of this technology for sustainable building operations.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"322 ","pages":"Article 119204"},"PeriodicalIF":9.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Danfeng Wang , Jie Zhang , Qianqian Chen , Yu Gu , Xinqing Chen , Zhiyong Tang
{"title":"Reducing the lifecycle carbon emissions of rice straw-to-methanol for alternative marine fuel through self-generation and renewable electricity","authors":"Danfeng Wang , Jie Zhang , Qianqian Chen , Yu Gu , Xinqing Chen , Zhiyong Tang","doi":"10.1016/j.enconman.2024.119202","DOIUrl":"10.1016/j.enconman.2024.119202","url":null,"abstract":"<div><div>The advancement of maritime decarbonization has accelerated the adoption of alternative marine fuels, particularly methanol. However, its widespread adoption encounters three primary obstacles: pricing, availability, and carbon accounting. Given the current state of technological and industrial developments, designing technical routes that comply with carbon emission restrictions is a primary concern for all project stakeholders. Therefore, based on a 100,000 tons/year biomass-to-methanol (BTM) plant located in the eastern coast of China, four integrated routes were designed and simulated to obtain steam, electricity and water balances. Energy and exergy analysis were then performed. Finally, a carbon emission assessment (calculated as equivalent carbon dioxide ‘CO<sub>2</sub>eq’) was conducted with 30 scenarios. Results indicated that the carbon emissions during rice straw production stage, including carbon emissions from methane and nitrous oxide emissions from rice fields, were 0.2020 and 0.5563 kg CO<sub>2</sub>eq/kg straw-dry using value and energy allocations, respectively. Excluding rice cultivation and harvesting, compared to the 2021 baseline level of 94 gCO<sub>2</sub>eq/MJ set by the European Union’s Renewable Energy Directive III (EU RED III), the carbon emission intensity of methanol decreased by 75.4 %, 76.2 %, 71.5 % and 74.5 %, respectively for route 1 to 4, satisfying the EU-mandated carbon emission limit. Sensitivity analysis showed that reducing rice straw consumption and energy consumption of rice straw pulverizing, drying, and shaping could effectively reduce carbon emissions. Overall, given the carbon emission limit, for a BTM plants in plan or under-construction, this study suggests to provide external renewable electricity, or to configure self-generation utilizing by-product fuel gas and syngas.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"322 ","pages":"Article 119202"},"PeriodicalIF":9.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Novella, M. Lopez-Juarez, D. González-Domínguez, I. Nidaguila
{"title":"Comparative analysis of powertrain architectures for fuel cell light commercial vehicles in terms of performance and durability","authors":"R. Novella, M. Lopez-Juarez, D. González-Domínguez, I. Nidaguila","doi":"10.1016/j.enconman.2024.119191","DOIUrl":"10.1016/j.enconman.2024.119191","url":null,"abstract":"<div><div>At the present time, the critical climate situation has raised awareness about the importance of developing carbon-free technologies. In this context, fuel cell systems (FCS) have become one of the key technologies in the pathway to decarbonization. Given that road transport is a major contributor to greenhouse gas (GHG) emissions, this paper focuses on a specific segment of this sector: light commercial vehicles (LCVs). The current market situation shows that LCV manufacturers have not yet decided what is the appropriate powertrain architecture for this kind of vehicle. Thus, the current paper studies a wide range of possible FCS-based propulsive system designs, changing the size of the FCS, electric battery and H<sub>2</sub> tank. These propulsive system architectures are analyzed concerning the performance of the vehicle, in terms of consumption and range, and the durability of its FCS. The evaluation of these different designs will be highly valuable for the LCV industry and manufacturers, as it allows to understand the optimal powertrain solution. The study demonstrates that a significant increase in range can be achieved with only a minor penalty in hydrogen consumption. Additionally, the research indicates that it is feasible to employ one of the most durable FCS designs while meeting LCV mission requirements with minimal consumption penalty. In conclusion, this paper provides valuable data to the ongoing research in this field, offering a detailed analysis of the impact of H<sub>2</sub> consumption, autonomy, and durability of the FCS across various vehicle architectures under typical LCV driving conditions.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"323 ","pages":"Article 119191"},"PeriodicalIF":9.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shahid Nawaz Khan , Syed Ali Abbas Kazmi , Shabieh Ul Hassan
{"title":"Optimal planning and operation of heterogeneous autonomous and grid-connected microgrids based on multi-criteria techno-economic, environmental, and social indices","authors":"Shahid Nawaz Khan , Syed Ali Abbas Kazmi , Shabieh Ul Hassan","doi":"10.1016/j.enconman.2024.119206","DOIUrl":"10.1016/j.enconman.2024.119206","url":null,"abstract":"<div><div>Sustainable energy transition involves the execution of recent technologies as a means of ensuring energy access and security. However, the increasing adoption of such technologies, particularly in the presence of diverse constraints, poses significant challenges from a planning perspective. In this context, the multi-objective analysis offers valuable insights for decision-making that balances mutual benefits, as relying solely on a single objective may increase the risk level for stakeholders engaged in coordinated decisions. Based on the real dataset, this study presents a comparative multi-criteria techno-economic, environmental, and social evaluation of site-specific unified standalone and grid-connected hybrid microgrids. The study employs a modified Last Cluster Mean Carried Forward approach for data processing, incorporating the Proprietary Derivative-free Algorithm and Original Grid-Search Algorithm to ensure a standardized comparison. Results reveal the substantial advantages of grid-connected systems over standalone counterparts, with reductions of 12.54 % to 63.73 % and 68.93 % to 89.13 % in terms of Net Present Cost and Levelized Cost of Energy, respectively. Grid-connected systems exhibit superior adaptability, recovering 52.3 % to 98.1 % surplus energy with a Renewable Fraction averaging 77.1 % to 87.9 %. However, these systems were hindered by frequent interruptions and required a minimum capacity shortage of 2.5 % to 3.5 %. Furthermore, grid-connected systems have proved feasible when carbon emissions, forests required to absorb the emissions, and the Social Cost of Carbon Emissions are considered in the range of 4.65–67.13 kiloton (metric), 423.32–6108.53 ha, and $0.24-$3.42 million, respectively. Social analysis and sensitivity analyses are performed to justify the robustness and adaptability. Lastly, the findings are followed by policy recommendations and results validation by comparing prevailing government tariffs and other studies.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"322 ","pages":"Article 119206"},"PeriodicalIF":9.9,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shitong Fang , Xiying Wang , Xiao Zhang , Kui Wu , Tao Yan , Xinyuan Chuai , Xingbao Huang , Xin Li , Zhihui Lai , Shuxiang Dong , Wei-Hsin Liao
{"title":"High output, lightweight and small-scale rotational piezoelectric energy harvester utilizing internal impact effect","authors":"Shitong Fang , Xiying Wang , Xiao Zhang , Kui Wu , Tao Yan , Xinyuan Chuai , Xingbao Huang , Xin Li , Zhihui Lai , Shuxiang Dong , Wei-Hsin Liao","doi":"10.1016/j.enconman.2024.119180","DOIUrl":"10.1016/j.enconman.2024.119180","url":null,"abstract":"<div><div>It is in great need to achieve continuous battery-free wireless sensing and monitoring of an amount of ultra-low-frequency large-scale rotational machines in transportation, civil engineering, manufacturing, and energy industry. Rotational piezoelectric energy harvesters are promising candidates to power sensors for their high energy densities and ease of integration. However, meeting the sufficient and continuous power supply needs of long-distance sensors for the Internet of Things (IoT) while maintaining the small volume and mass of harvesters remains a challenging task. To overcome this challenge, this work firstly implements the internal impact mechanism to a rotational centrifugal softening piezoelectric energy harvester to achieve its high output, lightweight and small-scale characteristics. On one hand, the internal impact effect utilizes the velocity difference between the piezoelectric beam and sliding mass to enlarge the deflection of piezoelectric material and boost the energy output. On the other hand, the centrifugal softening effect reduces the resonant frequency of harvester, leading to the harvester suitably used for the ultra-low-frequency rotation environment. Theoretical and experimental results demonstrate that the proposed harvester can achieve the normalized energy densities of 17.39 <span><math><mi>μ</mi></math></span>W/(g Hz) and 1800.97 <span><math><mi>μ</mi></math></span>W/(cm<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span> Hz) that stand out among the previously reported rotational piezoelectric energy harvesting devices. Additionally, it is proven experimentally that the energy harvester can achieve the self-powered LoRa system under ultra-low-frequency rotations. The proposed harvester demonstrates significant potential for future battery-free sensors in large-scale rotational machinery monitoring.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"322 ","pages":"Article 119180"},"PeriodicalIF":9.9,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zemin Fu , Xiang Shu , Qiange Zhang , Dongmei Qin , Sheng Han , Zhenbiao Dong
{"title":"Solar-driven induced photoelectron remember effect involved in core–shell NiCo2S4@Ni3V2O8 composite electrode with superior electrochemical energy storage for asymmetric supercapacitor","authors":"Zemin Fu , Xiang Shu , Qiange Zhang , Dongmei Qin , Sheng Han , Zhenbiao Dong","doi":"10.1016/j.enconman.2024.119190","DOIUrl":"10.1016/j.enconman.2024.119190","url":null,"abstract":"<div><div>Photo-assisted supercapacitor systems offer a compelling approach to effectively harnessing both solar and electrical energy. In this study, the core–shell heterostructure NiCo<sub>2</sub>S<sub>4</sub>@Ni<sub>3</sub>V<sub>2</sub>O<sub>8</sub> (NCS@NVO) was successfully synthesized for the development of photosensitive supercapacitor electrodes. NCS@NVO demonstrated a pronounced photoelectron memory effect under illumination, attributed to the solar-driven contributions of both NCS and NVO, as photon absorption facilitated electron-hole pair separation and transport. Compared to the specific capacitance in the dark (2292F g<sup>−1</sup> at 1 A g<sup>−1</sup>), the capacitance of the NCS@NVO composite electrode increased dramatically to 3025F g<sup>−1</sup> when exposed to light. Moreover, the capacitance retention rate remained remarkably high at 99.83 % after 10,000 cycles at 20 A g<sup>−1</sup>. In addition, the NCS@NVO hybrid supercapacitor achieved an outstanding energy density of 63.56 W h kg<sup>−1</sup> under illumination, alongside a power density of 789.84 W kg<sup>−1</sup>. This study thoroughly investigated the solar-induced photoelectron memory effect in the NCS@NVO composite electrode for asymmetric supercapacitors, paving the way for the design of high-performance photosensitive nano-electrodes in advanced electrochemical energy storage applications.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"323 ","pages":"Article 119190"},"PeriodicalIF":9.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance improvement of high-power PEMFC using wet compression and exhaust energy multiple utilizations","authors":"Jiuxuan Wei, Mingxu Qi, Hong Zhang, Changmao Yang","doi":"10.1016/j.enconman.2024.119208","DOIUrl":"10.1016/j.enconman.2024.119208","url":null,"abstract":"<div><div>To improve the efficiency of the high-power proton exchange membrane fuel cell (PEMFC) system, a novel system integrated with wet compression and cathode exhaust energy recovery is proposed. A 1D steady-state model is established for the proposed system to obtain the thermodynamic operating modes. The NSGA Ⅱ algorithm is used to identify the suitable humidification strategy for each operating point. The results show that the utilization of wet compression for the PEMFC system has multiple combined benefits. Considering the available gains in the practical wet compression process, the trade-off in compression efficiency at the rated point results in an increment of 3.6 %. The parasitic power of the compressor decreases from 15.3 kW to 12.1 kW. The electrical efficiency and the net output power of the proposed system increase by 1.7 % and 8.0 kW, respectively. Furthermore, parametric analysis of wet compression reveals additional advantages in precooling and external humidification processes. At the rated point with the wet compression, the heat load of the liquid cooling heat exchanger decreases from 6.6 kW to 4.1 kW, and the water recovery ratio of the membrane humidifier reaches 30 %. The findings of the novel PEMFC system provide substantial guidelines for treating cathode exhaust gas and for the development and utilization of wet compression in fuel cell systems.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"322 ","pages":"Article 119208"},"PeriodicalIF":9.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Su , Jiru Li , Xu Jin , Zhongyan Liu , Di Yang , Hao Zhang , Xiaosong Zhang
{"title":"Energy, exergy, environmental and economic analysis of a solar-assisted heat pump-driven enclosed drying system with liquid desiccant dehumidification","authors":"Wei Su , Jiru Li , Xu Jin , Zhongyan Liu , Di Yang , Hao Zhang , Xiaosong Zhang","doi":"10.1016/j.enconman.2024.119201","DOIUrl":"10.1016/j.enconman.2024.119201","url":null,"abstract":"<div><div>Drying process, as one of the most energy-intensive processes, plays a significant role in a variety of agricultural, residential and industrial applications. Existing solar or heat pump drying systems have not been well promoted and applied due to their instability or inefficiency. In order to achieve a stable and efficient drying process, a novel solar-assisted heat pump-driven enclosed drying system with liquid desiccant dehumidification is proposed in this study, in which total waste heat recovery structure and operation modes transition control strategy are carefully designed for better system performance. A comprehensive analysis incorporating energy, exergy, economic, and environmental assessments are performed based on established mathematical models. Results demonstrate that the proposed system achieves a maximum coefficient of performance of 7.84, an energy utilization ratio of 11.09, and a specific moisture extraction rate of 14.87 kg/kW·h when solar radiation exceeds 640 W/m<sup>2</sup>. Exergy analysis further reveals that over 80 % of exergy loss occurs in the solar collector, with the system attaining an exergy efficiency of 50.1 %. When annual solar radiation values reach 1580 kW·h/m<sup>2</sup> and 1300 kW·h/m<sup>2</sup>, the system reduces electricity consumption by 36.64 % and 29.82 %, respectively, compared to traditional cascade enclosed heat pump drying systems, achieving a payback period of approximately 5 to 18 months. Additionally, the novel system cuts annual CO<sub>2</sub> emissions by 27.65 % compared to conventional drying methods, highlighting its significant environmental benefits.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"322 ","pages":"Article 119201"},"PeriodicalIF":9.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimizing hydrogen and e-methanol production through Power-to-X integration in biogas plants","authors":"Alberto Alamia , Behzad Partoon , Eoghan Rattigan , Gorm Bruun Andresen","doi":"10.1016/j.enconman.2024.119175","DOIUrl":"10.1016/j.enconman.2024.119175","url":null,"abstract":"<div><div>The European Union’s strategy for achieving net zero emissions heavily depends on the development of hydrogen and e-/bio-fuel infrastructure and economy. These fuels are poised to play a critical role, functioning both as energy carriers and balancing agents for the inherent variability of renewable energy sources. Large-scale production will necessitate additional renewable capacity, and various Power-to-X (PtX) concepts are emerging in countries with significant renewable potential. However, sourcing renewable carbon presents a significant challenge in scaling the production of carbon-based e-fuels, and this is anticipated to become a limiting factor in the future. This investigation examines the concept of a PtX hub that sources renewable CO<sub>2</sub> from modern biogas plants, integrating renewable energy, hydrogen production, and methanol synthesis at a single site. This concept facilitates an internal, behind-the-meter market for energy and material flows, balanced by an interface with the external energy system. The size and operation of all plants comprising the PtX hub were co-optimized, considering various levels of integration with surrounding energy systems, including the potential establishment of a local hydrogen grid. The levelized costs of hydrogen and e-methanol were estimated for a site commencing operation in 2030, taking into consideration the recent legislation about renewable fuels of non-biological origin (RFNBOs). Our findings indicate that, in its optimal configuration, the PtX hub relies almost exclusively on on-site renewable energy, selling excess electricity to the grid for balancing purposes. The connection to a local hydrogen grid facilitates smoother PtX process operations, while the behind-the-meter market reduces energy prices, providing a buffer against external market variability. The results demonstrate the feasibility of achieving a levelized cost of methanol below 650 € /t and hydrogen production costs below 3 €/kg in 2030. In comparison, a standalone e-methanol plant would incur a 23% higher cost. The ratio of CO<sub>2</sub> recovered to methanol produced was identified as a critical technical parameter, with recovery rates exceeding 90% necessitating substantial investments in CO<sub>2</sub> and H<sub>2</sub> storage. Overall, our findings support the planning of PtX infrastructures that consider integration with the agricultural sector as a cost-effective pathway to access renewable carbon resources.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"322 ","pages":"Article 119175"},"PeriodicalIF":9.9,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qi Niu , Xin Du , Kai Li , Qiang Lu , Frederik Ronsse
{"title":"Role of catalyst porosity and acidity in nitrogen transformation during catalytic fast pyrolysis of microalgae: Study on extracted protein and model amino acids","authors":"Qi Niu , Xin Du , Kai Li , Qiang Lu , Frederik Ronsse","doi":"10.1016/j.enconman.2024.119210","DOIUrl":"10.1016/j.enconman.2024.119210","url":null,"abstract":"<div><div>Valorizing defatted microalgae after lipid extraction maximizes the value derived from microalgae. Catalytic fast pyrolysis (CFP) of defatted microalgae effectively promotes denitrogenation, thereby advancing the sustainable production of aromatic hydrocarbons (AHs). This study explored how the intricate structures of various amino acids (lysine, proline, and tryptophan) and extracted microalgae protein influenced nitrogen transformation pathways by means of pyrolysis − gas chromatography/mass spectrometry (Py-GC/MS) at 500 °C. The roles of acidic sites and pore sizes of metal-doped (0.5Ni) and alkali-treated (0.05 M) HZSM-5 (Hydrogen Zeolite Socony Mobil-5) catalysts in denitrogenation and aromatization were focused upon. The doping of Ni led to a 2.5 % increase in medium acidity, whereas the alkaline pretreatment resulted in a 40.0 % increase in mesopore volume. The relative yields of AHs from extracted protein increased by 10.0, 10.3, and 10.5 times with the addition of HZSM-5, 0.05 M and 0.5Ni, respectively. The denitrogenation indices of the extracted protein were 0.22, 0.28 and 0.31 when HZSM-5, 0.05 M and 0.5Ni catalysts were applied, respectively. The results revealed that surface area enhanced the adsorption of intermediates from lysine, facilitating their entry into pore channels for subsequent reactions on acid sites. The formation of mesopores in the 0.05 M catalyst improved mass diffusion and accessibility of acids sites for the pyrolysis of proline and tryptophan which had a larger molecular size than lysine. A hydrogenation catalyst like Ni was crucial especially for the cleavage of N-heterocyclic amino acids with lower degree of saturation within N-containing bonds. This research provides a basic understanding of the roles that chemical structures of amino acids and catalysts synthesis play in the efficient denitrogenation and AHs production from microalgae pyrolysis.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"322 ","pages":"Article 119210"},"PeriodicalIF":9.9,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}