EJNMMI Physics最新文献

筛选
英文 中文
Optimising total knee replacement imaging: a novel 3D printed PET/CT anthropomorphic phantom for metal artefact simulation. 优化全膝关节置换成像:用于金属伪影模拟的新型 3D 打印 PET/CT 拟人模型。
IF 4 2区 医学
EJNMMI Physics Pub Date : 2024-03-28 DOI: 10.1186/s40658-024-00634-2
Rajeh Assiri, Karen Knapp, Jon Fulford, Junning Chen
{"title":"Optimising total knee replacement imaging: a novel 3D printed PET/CT anthropomorphic phantom for metal artefact simulation.","authors":"Rajeh Assiri, Karen Knapp, Jon Fulford, Junning Chen","doi":"10.1186/s40658-024-00634-2","DOIUrl":"10.1186/s40658-024-00634-2","url":null,"abstract":"<p><strong>Purpose: </strong>Arthroplasty phantoms, including total knee replacement (TKR) phantoms, have been frequently used to test metal artefact reduction methods applied to positron emission tomography/computed tomography (PET/CT) images. These phantoms generally simulate either simple anatomical features or simple activity distribution around the metal inserts in the PET/CT scans. 3D printing has been used recently to fabricate fillable anthropomorphic phantoms that accurately simulate volume and geometry. This study aims to describe the process of image segmentation, phantom modelling, 3D printing and validation of a population-based fillable TKR phantom that simulates human TKR PET/CT metal artefacts.</p><p><strong>Methods: </strong>10 participants (5 male and 5 female) were scanned using 3T MRI and the images were segmented to create average male and average female 3D knee models, inversely with void cortical and porous trabecular compartments for 3D printing and contrast media. Virtual total knee replacement (TKR) surgery was implemented on these models to prepare the insertion locations for knee prosthetic implants. Subsequently, TKR models were printed using a 3D photopolymer resin printer and then injected with normal saline to test the phantoms for any leaks. Subsequently, diluted iodinated contrast media was injected into the cortical compartment and saline with <sup>18</sup>F-FDG was injected into the trabecular compartment and the phantom was scanned with PET/CT. The images were then evaluated and compared to the human knee radiographic features reported in the literature.</p><p><strong>Results: </strong>Phantoms were shown to be fluid-tight with distinct compartments. They showed comparable volume and geometry to the segmented human MRI knees. The phantoms demonstrated similar values for x-ray attenuation and Hounsfield units (HU) to the literature for both cortical and trabecular compartments. The phantoms displayed a uniform distribution for the radioactive tracer, resembling that seen in human trabecular bone PET. TKR phantom PET/CT images with metal inserts replicated the clinical metal artefacts seen clinically in the periprosthetic area.</p><p><strong>Conclusion: </strong>This novel, 3D-printed, and customisable phantom effectively mimics the geometric, radiographic and radiotracer distribution features of real TKRs. Importantly, it simulates TKR image metal artefacts, making it suitable for repeatable and comprehensive evaluation of various metal artefact reduction methods in future research.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"31"},"PeriodicalIF":4.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10973302/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140305219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of the axial resolution of a compact gamma camera with coded aperture collimator. 评估带有编码孔径准直器的紧凑型伽马相机的轴向分辨率。
IF 3 2区 医学
EJNMMI Physics Pub Date : 2024-03-21 DOI: 10.1186/s40658-024-00631-5
Tobias Meißner, Laura Antonia Cerbone, Paolo Russo, Werner Nahm, Jürgen Hesser
{"title":"Assessment of the axial resolution of a compact gamma camera with coded aperture collimator.","authors":"Tobias Meißner, Laura Antonia Cerbone, Paolo Russo, Werner Nahm, Jürgen Hesser","doi":"10.1186/s40658-024-00631-5","DOIUrl":"10.1186/s40658-024-00631-5","url":null,"abstract":"<p><strong>Purpose: </strong>Handheld gamma cameras with coded aperture collimators are under investigation for intraoperative imaging in nuclear medicine. Coded apertures are a promising collimation technique for applications such as lymph node localization due to their high sensitivity and the possibility of 3D imaging. We evaluated the axial resolution and computational performance of two reconstruction methods.</p><p><strong>Methods: </strong>An experimental gamma camera was set up consisting of the pixelated semiconductor detector Timepix3 and MURA mask of rank 31 with round holes of 0.08 mm in diameter in a 0.11 mm thick Tungsten sheet. A set of measurements was taken where a point-like gamma source was placed centrally at 21 different positions within the range of 12-100 mm. For each source position, the detector image was reconstructed in 0.5 mm steps around the true source position, resulting in an image stack. The axial resolution was assessed by the full width at half maximum (FWHM) of the contrast-to-noise ratio (CNR) profile along the z-axis of the stack. Two reconstruction methods were compared: MURA Decoding and a 3D maximum likelihood expectation maximization algorithm (3D-MLEM).</p><p><strong>Results: </strong>While taking 4400 times longer in computation, 3D-MLEM yielded a smaller axial FWHM and a higher CNR. The axial resolution degraded from 5.3 mm and 1.8 mm at 12 mm to 42.2 mm and 13.5 mm at 100 mm for MURA Decoding and 3D-MLEM respectively.</p><p><strong>Conclusion: </strong>Our results show that the coded aperture enables the depth estimation of single point-like sources in the near field. Here, 3D-MLEM offered a better axial resolution but was computationally much slower than MURA Decoding, whose reconstruction time is compatible with real-time imaging.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"30"},"PeriodicalIF":3.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11266340/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140179456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of a 3D CZT and conventional SPECT/CT system for quantitative Lu-177 SPECT imaging. 用于定量 Lu-177 SPECT 成像的 3D CZT 和传统 SPECT/CT 系统的比较。
IF 4 2区 医学
EJNMMI Physics Pub Date : 2024-03-19 DOI: 10.1186/s40658-024-00627-1
Victor Nuttens, Georg Schramm, Yves D'Asseler, Michel Koole
{"title":"Comparison of a 3D CZT and conventional SPECT/CT system for quantitative Lu-177 SPECT imaging.","authors":"Victor Nuttens, Georg Schramm, Yves D'Asseler, Michel Koole","doi":"10.1186/s40658-024-00627-1","DOIUrl":"10.1186/s40658-024-00627-1","url":null,"abstract":"<p><strong>Purpose: </strong>Next-generation SPECT/CT systems with CdZnTe (CZT) digital detectors in a ring-like setup are emerging to perform quantitative Lu-177 SPECT imaging in clinical routine. It is essential to assess how the shorter acquisition time might affect the image quality and uncertainty on the mean absorbed dose of the tumors and organs at risk compared to a conventional system.</p><p><strong>Methods: </strong>A NEMA Image Quality phantom was scanned with a 3D CZT SPECT/CT system (Veriton, by Spectrum Dynamics) using 6 min per bed position and with a conventional SPECT/CT system (Symbia T16, by Siemens) using 16 min per bed position. The sphere-to-background ratio was 12:1 and the background activity concentration ranged from 0.52 to 0.06 MBq/mL. A clinical reconstruction protocol for dosimetry purposes was determined for both systems by maximizing the sphere-to-background ratio while keeping the coefficient of variation of the background as low as possible. The corresponding image resolution was determined by the matching filter method and used for a dose uncertainty assessment of both systems following an established uncertainty model..</p><p><strong>Results: </strong>The optimized iterative reconstruction protocol included scatter and attenuation correction for both systems and detector response modeling for the Siemens system. For the 3D CZT system, 6 iterations and 8 subsets were combined with a Gaussian post-filter of 3 mm Full Width Half Maximum (FWHM) for post-smoothing. For the conventional system, 16 iterations and 16 subsets were applied with a Gaussian post-smoothing filter of 1 mm FWHM. For these protocols, the sphere-to-background ratio was 18.5% closer to the true ratio for the conventional system compared to the 3D CZT system when considering the four largest spheres. Meanwhile, the background coefficient of variation was very similar for both systems. These protocols resulted in SPECT image resolution of 14.8 mm and 13.6 mm for the 3D CZT and conventional system respectively. Based on these resolution estimates, a 50% dose uncertainty corresponded to a lesion volume of 28 mL for the conventional system and a lesion volume of 33 mL for the 3D CZT system.</p><p><strong>Conclusions: </strong>An optimized reconstruction protocol for a Veriton system with 6 min of acquisition time per bed position resulted in slightly higher dose uncertainties than a conventional Symbia system using 16 min of acquisition time per bed position. Therefore, a 3D CZT SPECT/CT allows to significantly reduce the acquisition times with only a very limited impact on dose uncertainties such that quantitative Lu-177 SPECT/CT imaging becomes much more accessible for treatment concurrent dosimetry. Nevertheless, the uncertainty of SPECT-based dose estimates remains high.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"29"},"PeriodicalIF":4.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10948674/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140157828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduction of [68Ga]Ga-DOTA-TATE injected activity for digital PET/MR in comparison with analogue PET/CT. 与模拟 PET/CT 相比,数字 PET/MR 注入的[68Ga]Ga-DOTA-TATE 活性降低。
IF 3 2区 医学
EJNMMI Physics Pub Date : 2024-03-15 DOI: 10.1186/s40658-024-00629-z
Christina P W Cox, Tessa Brabander, Erik Vegt, Quido G de Lussanet de la Sablonière, Laura H Graven, Frederik A Verburg, Marcel Segbers
{"title":"Reduction of [<sup>68</sup>Ga]Ga-DOTA-TATE injected activity for digital PET/MR in comparison with analogue PET/CT.","authors":"Christina P W Cox, Tessa Brabander, Erik Vegt, Quido G de Lussanet de la Sablonière, Laura H Graven, Frederik A Verburg, Marcel Segbers","doi":"10.1186/s40658-024-00629-z","DOIUrl":"10.1186/s40658-024-00629-z","url":null,"abstract":"<p><strong>Background: </strong>New digital detectors and block-sequential regularized expectation maximization (BSREM) reconstruction algorithm improve positron emission tomography (PET)/magnetic resonance (MR) image quality. The impact on image quality may differ from analogue PET/computed tomography (CT) protocol. The aim of this study is to determine the potential reduction of injected [<sup>68</sup>Ga]Ga-DOTA-TATE activity for digital PET/MR with BSREM reconstruction while maintaining at least equal image quality compared to the current analogue PET/CT protocol.</p><p><strong>Methods: </strong>NEMA IQ phantom data and 25 patients scheduled for a diagnostic PET/MR were included. According to our current protocol, 1.5 MBq [<sup>68</sup>Ga]Ga-DOTA-TATE per kilogram (kg) was injected. After 60 min, scans were acquired with 3 (≤ 70 kg) or 4 (> 70 kg) minutes per bedposition. PET/MR scans were reconstructed using BSREM and factors β 150, 300, 450 and 600. List mode data with reduced counts were reconstructed to simulate scans with 17%, 33%, 50% and 67% activity reduction. Image quality was measured quantitatively for PET/CT and PET/MR phantom and patient data. Experienced nuclear medicine physicians performed visual image quality scoring and lesion counting in the PET/MR patient data.</p><p><strong>Results: </strong>Phantom analysis resulted in a possible injected activity reduction of 50% with factor β = 600. Quantitative analysis of patient images revealed a possible injected activity reduction of 67% with factor β = 600. Both with equal or improved image quality as compared to PET/CT. However, based on visual scoring a maximum activity reduction of 33% with factor β = 450 was acceptable, which was further limited by lesion detectability analysis to an injected activity reduction of 17% with factor β = 450.</p><p><strong>Conclusion: </strong>A digital [<sup>68</sup>Ga]Ga-DOTA-TATE PET/MR together with BSREM using factor β = 450 result in 17% injected activity reduction with quantitative values at least similar to analogue PET/CT, without compromising on PET/MR visual image quality and lesion detectability.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"27"},"PeriodicalIF":3.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11266332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140136543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
155Tb production by cyclotrons: what level of 155Gd enrichment allows clinical applications? 利用回旋加速器生产 155Tb:155Gd 富集到什么程度才能用于临床?
IF 3 2区 医学
EJNMMI Physics Pub Date : 2024-03-15 DOI: 10.1186/s40658-024-00630-6
Francesca Barbaro, Luciano Canton, Nikolay Uzunov, Laura De Nardo, Laura Melendez-Alafort
{"title":"<sup>155</sup>Tb production by cyclotrons: what level of <sup>155</sup>Gd enrichment allows clinical applications?","authors":"Francesca Barbaro, Luciano Canton, Nikolay Uzunov, Laura De Nardo, Laura Melendez-Alafort","doi":"10.1186/s40658-024-00630-6","DOIUrl":"10.1186/s40658-024-00630-6","url":null,"abstract":"<p><strong>Background: </strong><sup>155</sup>Tb represents a potentially useful radionuclide for diagnostic medical applications, but its production remains a challenging problem, in spite of the fact that many production routes have been already investigated and tested. A recent experimental campaign, conducted with low-energy proton beams impinging on a <sup>155</sup>Gd target with 91.9% enrichment, demonstrated a significant co-production of <sup>156g</sup>Tb, a contaminant of great concern since its half-life is comparable to that of <sup>155</sup>Tb and its high-energy γ emissions severely impact on the dose released and on the quality of the SPECT images. In the present investigation, the isotopic purity of the enriched <sup>155</sup>Gd target necessary to minimize the co-production of contaminant radioisotopes, in particular <sup>156g</sup>Tb, was explored using various computational simulations.</p><p><strong>Results: </strong>Starting from the recent experimental data obtained with a 91.9% <sup>155</sup>Gd-enriched target, the co-production of other Tb radioisotopes besides <sup>155</sup>Tb has been theoretically evaluated using the Talys code. It was found that <sup>156</sup>Gd, with an isotopic content of 5.87%, was the principal contributor to the co-production of <sup>156g</sup>Tb. The analysis also demonstrated that the maximum amount of <sup>156</sup>Gd admissible for <sup>155</sup>Tb production with a radionuclidic purity higher than 99% was 1%. A less stringent condition was obtained through computational dosimetry analysis, suggesting that a 2% content of <sup>156</sup>Gd in the target can be tolerated to limit the dose increase to the patient below the 10% limit. Moreover, it has been demonstrated that the imaging properties of the produced <sup>155</sup>Tb are not severely affected by this level of impurity in the target.</p><p><strong>Conclusions: </strong><sup>155</sup>Tb can be produced with a quality suitable for medical applications using low-energy proton beams and <sup>155</sup>Gd-enriched targets, if the <sup>156</sup>Gd impurity content does not exceed 2%. Under these conditions, the dose increase due to the presence of contaminant radioisotopes remains below the 10% limit and good quality images, comparable to those of <sup>111</sup>In, are guaranteed.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"26"},"PeriodicalIF":3.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286608/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140131025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sequential deep learning image enhancement models improve diagnostic confidence, lesion detectability, and image reconstruction time in PET. 序列深度学习图像增强模型提高了 PET 的诊断可信度、病灶可探测性和图像重建时间。
IF 4 2区 医学
EJNMMI Physics Pub Date : 2024-03-15 DOI: 10.1186/s40658-024-00632-4
Meghi Dedja, Abolfazl Mehranian, Kevin M Bradley, Matthew D Walker, Patrick A Fielding, Scott D Wollenweber, Robert Johnsen, Daniel R McGowan
{"title":"Sequential deep learning image enhancement models improve diagnostic confidence, lesion detectability, and image reconstruction time in PET.","authors":"Meghi Dedja, Abolfazl Mehranian, Kevin M Bradley, Matthew D Walker, Patrick A Fielding, Scott D Wollenweber, Robert Johnsen, Daniel R McGowan","doi":"10.1186/s40658-024-00632-4","DOIUrl":"10.1186/s40658-024-00632-4","url":null,"abstract":"<p><strong>Background: </strong>Investigate the potential benefits of sequential deployment of two deep learning (DL) algorithms namely DL-Enhancement (DLE) and DL-based time-of-flight (ToF) (DLT). DLE aims to enhance the rapidly reconstructed ordered-subset-expectation-maximisation algorithm (OSEM) images towards block-sequential-regularised-expectation-maximisation (BSREM) images, whereas DLT aims to improve the quality of BSREM images reconstructed without ToF. As the algorithms differ in their purpose, sequential application may allow benefits from each to be combined. 20 FDG PET-CT scans were performed on a Discovery 710 (D710) and 20 on Discovery MI (DMI; both GE HealthCare). PET data was reconstructed using five combinations of algorithms:1. ToF-BSREM, 2. ToF-OSEM + DLE, 3. OSEM + DLE + DLT, 4. ToF-OSEM + DLE + DLT, 5. ToF-BSREM + DLT. To assess image noise, 30 mm-diameter spherical VOIs were drawn in both lung and liver to measure standard deviation of voxels within the volume. In a blind clinical reading, two experienced readers rated the images on a five-point Likert scale based on lesion detectability, diagnostic confidence, and image quality.</p><p><strong>Results: </strong>Applying DLE + DLT reduced noise whilst improving lesion detectability, diagnostic confidence, and image reconstruction time. ToF-OSEM + DLE + DLT reconstructions demonstrated an increase in lesion SUV<sub>max</sub> of 28 ± 14% (average ± standard deviation) and 11 ± 5% for data acquired on the D710 and DMI, respectively. The same reconstruction scored highest in clinical readings for both lesion detectability and diagnostic confidence for D710.</p><p><strong>Conclusions: </strong>The combination of DLE and DLT increased diagnostic confidence and lesion detectability compared to ToF-BSREM images. As DLE + DLT used input OSEM images, and because DL inferencing was fast, there was a significant decrease in overall reconstruction time. This could have applications to total body PET.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"28"},"PeriodicalIF":4.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10942956/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140136544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Validation of image-derived input function using a long axial field of view PET/CT scanner for two different tracers. 使用长轴视场 PET/CT 扫描仪对两种不同示踪剂的图像衍生输入功能进行验证。
IF 4 2区 医学
EJNMMI Physics Pub Date : 2024-03-13 DOI: 10.1186/s40658-024-00628-0
Xavier Palard-Novello, Denise Visser, Nelleke Tolboom, Charlotte L C Smith, Gerben Zwezerijnen, Elsmarieke van de Giessen, Marijke E den Hollander, Frederik Barkhof, Albert D Windhorst, Bart Nm van Berckel, Ronald Boellaard, Maqsood Yaqub
{"title":"Validation of image-derived input function using a long axial field of view PET/CT scanner for two different tracers.","authors":"Xavier Palard-Novello, Denise Visser, Nelleke Tolboom, Charlotte L C Smith, Gerben Zwezerijnen, Elsmarieke van de Giessen, Marijke E den Hollander, Frederik Barkhof, Albert D Windhorst, Bart Nm van Berckel, Ronald Boellaard, Maqsood Yaqub","doi":"10.1186/s40658-024-00628-0","DOIUrl":"10.1186/s40658-024-00628-0","url":null,"abstract":"<p><strong>Background: </strong>Accurate image-derived input function (IDIF) from highly sensitive large axial field of view (LAFOV) PET/CT scanners could avoid the need of invasive blood sampling for kinetic modelling. The aim is to validate the use of IDIF for two kinds of tracers, 3 different IDIF locations and 9 different reconstruction settings.</p><p><strong>Methods: </strong>Eight [<sup>18</sup>F]FDG and 10 [<sup>18</sup>F]DPA-714 scans were acquired respectively during 70 and 60 min on the Vision Quadra PET/CT system. PET images were reconstructed using various reconstruction settings. IDIFs were taken from ascending aorta (AA), descending aorta (DA), and left ventricular cavity (LV). The calibration factor (CF) extracted from the comparison between the IDIFs and the manual blood samples as reference was used for IDIFs accuracy and precision assessment. To illustrate the effect of various calibrated-IDIFs on Patlak linearization for [<sup>18</sup>F]FDG and Logan linearization for [<sup>18</sup>F]DPA-714, the same target time-activity curves were applied for each calibrated-IDIF.</p><p><strong>Results: </strong>For [<sup>18</sup>F]FDG, the accuracy and precision of the IDIFs were high (mean CF ≥ 0.82, SD ≤ 0.06). Compared to the striatum influx (K<sub>i</sub>) extracted using calibrated AA IDIF with the updated European Association of Nuclear Medicine Research Ltd. standard reconstruction (EARL2), K<sub>i</sub> mean differences were < 2% using the other calibrated IDIFs. For [<sup>18</sup>F]DPA714, high accuracy of the IDIFs was observed (mean CF ≥ 0.86) except using absolute scatter correction, DA and LV (respectively mean CF = 0.68, 0.47 and 0.44). However, the precision of the AA IDIFs was low (SD ≥ 0.10). Compared to the distribution volume (V<sub>T</sub>) in a frontal region obtained using calibrated continuous arterial sampler input function as reference, V<sub>T</sub> mean differences were small using calibrated AA IDIFs (for example V<sub>T</sub> mean difference = -5.3% using EARL2), but higher using calibrated DA and LV IDIFs (respectively + 12.5% and + 19.1%).</p><p><strong>Conclusions: </strong>For [<sup>18</sup>F]FDG, IDIF do not need calibration against manual blood samples. For [<sup>18</sup>F]DPA-714, AA IDIF can replace continuous arterial sampling for simplified kinetic quantification but only with calibration against arterial blood samples. The accuracy and precision of IDIF from LAFOV PET/CT system depend on tracer, reconstruction settings and IDIF VOI locations, warranting careful optimization.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"25"},"PeriodicalIF":4.0,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10933214/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140109594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical feasibility study of early 30-minute dynamic FDG-PET scanning protocol for patients with lung lesions. 针对肺部病变患者的早期 30 分钟动态 FDG-PET 扫描方案的临床可行性研究。
IF 4 2区 医学
EJNMMI Physics Pub Date : 2024-03-05 DOI: 10.1186/s40658-024-00625-3
Fen Du, Xieraili Wumener, Yarong Zhang, Maoqun Zhang, Jiuhui Zhao, Jinpeng Zhou, Yiluo Li, Bin Huang, Rongliang Wu, Zeheng Xia, Zhiheng Yao, Tao Sun, Ying Liang
{"title":"Clinical feasibility study of early 30-minute dynamic FDG-PET scanning protocol for patients with lung lesions.","authors":"Fen Du, Xieraili Wumener, Yarong Zhang, Maoqun Zhang, Jiuhui Zhao, Jinpeng Zhou, Yiluo Li, Bin Huang, Rongliang Wu, Zeheng Xia, Zhiheng Yao, Tao Sun, Ying Liang","doi":"10.1186/s40658-024-00625-3","DOIUrl":"10.1186/s40658-024-00625-3","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Purpose: &lt;/strong&gt;This study aimed to evaluate the clinical feasibility of early 30-minute dynamic 2-deoxy-2-[&lt;sup&gt;18&lt;/sup&gt;F]fluoro-D-glucose (&lt;sup&gt;18&lt;/sup&gt;F-FDG) positron emission tomography (PET) scanning protocol for patients with lung lesions in comparison to the standard 65-minute dynamic FDG-PET scanning as a reference.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;Dynamic &lt;sup&gt;18&lt;/sup&gt;F-FDG PET images of 146 patients with 181 lung lesions (including 146 lesions confirmed by histology) were analyzed in this prospective study. Dynamic images were reconstructed into 28 frames with a specific temporal division protocol for the scan data acquired 65 min post-injection. Ki images and quantitative parameters Ki based on two different acquisition durations [the first 30 min (Ki-30 min) and 65 min (Ki-65 min)] were obtained by applying the irreversible two-tissue compartment model using in-house Matlab software. The two acquisition durations were compared for Ki image quality (including visual score analysis and number of lesions detected) and Ki value (including accuracy of Ki, the value of differential diagnosis of lung lesions and prediction of PD-L1 status) by Wilcoxon's rank sum test, Spearman's rank correlation analysis, receiver operating characteristic (ROC) curve, and the DeLong test. The significant testing level (alpha) was set to 0.05.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;The quality of the Ki-30 min images was not significantly different from the Ki-65 min images based on visual score analysis (P &gt; 0.05). In terms of Ki value, among 181 lesions, Ki-65 min was statistically higher than Ki-30 min (0.027 ± 0.017 ml/g/min vs. 0.026 ± 0.018 ml/g/min, P &lt; 0.05), while a very high correlation was obtained between Ki-65 min and Ki-30 min (r = 0.977, P &lt; 0.05). In the differential diagnosis of lung lesions, ROC analysis was performed on 146 histologically confirmed lesions, the area under the curve (AUC) of Ki-65 min, Ki-30 min, and SUVmax was 0.816, 0.816, and 0.709, respectively. According to the Delong test, no significant differences in the diagnostic accuracies were found between Ki-65 min and Ki-30 min (P &gt; 0.05), while the diagnostic accuracies of Ki-65 min and Ki-30 min were both significantly higher than that of SUVmax (P &lt; 0.05). In 73 (NSCLC) lesions with definite PD-L1 expression results, the Ki-65 min, Ki-30 min, and SUVmax in PD-L1 positivity were significantly higher than that in PD-L1 negativity (P &lt; 0.05). And no significant differences in predicting PD-L1 positivity were found among Ki-65 min, Ki-30 min, and SUVmax (AUC = 0.704, 0.695, and 0.737, respectively, P &gt; 0.05), according to the results of ROC analysis and Delong test.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusions: &lt;/strong&gt;This study indicates that an early 30-minute dynamic FDG-PET acquisition appears to be sufficient to provide quantitative images with good-quality and accurate Ki values for the assessment of lung lesions and prediction of PD-L1 expression. Protocols with a shortened early 30","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"23"},"PeriodicalIF":4.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10914647/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140027665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and validation of a prognostic nomogram model in locally advanced NSCLC based on metabolic features of PET/CT and hematological inflammatory indicators. 基于 PET/CT 代谢特征和血液炎症指标的局部晚期 NSCLC 预后提名图模型的开发与验证。
IF 4 2区 医学
EJNMMI Physics Pub Date : 2024-03-05 DOI: 10.1186/s40658-024-00626-2
Congjie Wang, Jian Fang, Tingshu Jiang, Shanliang Hu, Ping Wang, Xiuli Liu, Shenchun Zou, Jun Yang
{"title":"Development and validation of a prognostic nomogram model in locally advanced NSCLC based on metabolic features of PET/CT and hematological inflammatory indicators.","authors":"Congjie Wang, Jian Fang, Tingshu Jiang, Shanliang Hu, Ping Wang, Xiuli Liu, Shenchun Zou, Jun Yang","doi":"10.1186/s40658-024-00626-2","DOIUrl":"10.1186/s40658-024-00626-2","url":null,"abstract":"<p><strong>Background: </strong>We combined the metabolic features of <sup>18</sup>F-FDG-PET/CT and hematological inflammatory indicators to establish a predictive model of the outcomes of patients with locally advanced non-small cell lung cancer (LA-NSCLC) receiving concurrent chemoradiotherapy.</p><p><strong>Results: </strong>A predictive nomogram was developed based on sex, CEA, systemic immune-inflammation index (SII), mean SUV (SUVmean), and total lesion glycolysis (TLG). The nomogram presents nice discrimination that yielded an AUC of 0.76 (95% confidence interval: 0.66-0.86) to predict 1-year PFS, with a sensitivity of 63.6%, a specificity of 83.3%, a positive predictive value of 83.7%, and a negative predictive value of 62.9% in the training set. The calibration curves and DCA suggested that the nomogram had good calibration and fit, as well as promising clinical effectiveness in the training set. In addition, survival analysis indicated that patients in the low-risk group had a significantly longer mPFS than those in the high-risk group (16.8 months versus 8.4 months, P < 0.001). Those results were supported by the results in the internal and external test sets.</p><p><strong>Conclusions: </strong>The newly constructed predictive nomogram model presented promising discrimination, calibration, and clinical applicability and can be used as an individualized prognostic tool to facilitate precision treatment in clinical practice.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"24"},"PeriodicalIF":4.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10914655/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140027666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Feasibility study of a SiPM-fiber detector for non-invasive measurement of arterial input function for preclinical and clinical positron emission tomography. 更正:用于临床前和临床正电子发射断层扫描动脉输入功能无创测量的 SiPM 纤维探测器的可行性研究。
IF 4 2区 医学
EJNMMI Physics Pub Date : 2024-03-04 DOI: 10.1186/s40658-024-00624-4
Sara de Scals, Luis Mario Fraile, José Manuel Udías, Laura Martínez Cortés, Marta Oteo, Miguel Ángel Morcillo, José Luis Carreras-Delgado, María Nieves Cabrera-Martín, Samuel España
{"title":"Correction: Feasibility study of a SiPM-fiber detector for non-invasive measurement of arterial input function for preclinical and clinical positron emission tomography.","authors":"Sara de Scals, Luis Mario Fraile, José Manuel Udías, Laura Martínez Cortés, Marta Oteo, Miguel Ángel Morcillo, José Luis Carreras-Delgado, María Nieves Cabrera-Martín, Samuel España","doi":"10.1186/s40658-024-00624-4","DOIUrl":"10.1186/s40658-024-00624-4","url":null,"abstract":"","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"22"},"PeriodicalIF":4.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912379/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140021220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信