基于突出 43Sc、61Cu 和 45Ti 的小型生物共轭物的治疗应用正电子发射器的比较分析。

IF 3 2区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Elif Hindié, Ulli Köster, Christophe Champion, Paolo Zanotti-Fregonara, Clément Morgat
{"title":"基于突出 43Sc、61Cu 和 45Ti 的小型生物共轭物的治疗应用正电子发射器的比较分析。","authors":"Elif Hindié, Ulli Köster, Christophe Champion, Paolo Zanotti-Fregonara, Clément Morgat","doi":"10.1186/s40658-024-00699-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Targeted radionuclide therapy with <sup>177</sup>Lu-labelled small conjugates is expanding rapidly, and its success is linked to appropriate patient selection. Companion diagnostic conjugates are usually labelled with <sup>68</sup>Ga, offering good imaging up to ≈2 h post-injection. However, the optimal tumor-to-background ratio is often reached later. This study examined promising positron-emitting radiometals with half-lives between 3 h and 24 h and β<sup>+</sup> intensity (I<sub>β+</sub>) ≥ 15% and compared them to <sup>68</sup>Ga. The radiometals included: <sup>43</sup>Sc, <sup>44</sup>Sc, <sup>45</sup>Ti, <sup>55</sup>Co, <sup>61</sup>Cu, <sup>64</sup>Cu, <sup>66</sup>Ga, <sup>85m</sup>Y, <sup>86</sup>Y, <sup>90</sup>Nb, <sup>132</sup>La, <sup>150</sup>Tb and <sup>152</sup>Tb. <sup>133</sup>La (7.2% I<sub>β+</sub>) was also examined because it was recently discussed, in combination with <sup>132</sup>La, as a possible diagnostic match for <sup>225</sup>Ac.</p><p><strong>Methods: </strong>Total electron and photon doses per decay and per positron; possibly interfering γ-ray emissions; typical activities to be injected for same-day imaging; positron range; and available production routes were examined.</p><p><strong>Results: </strong>For each annihilation process useful for PET imaging, the total energy released (MeV) is: <sup>45</sup>Ti (1.5), <sup>43</sup>Sc (1.6), <sup>61</sup>Cu and <sup>64</sup>Cu (1.8), <sup>68</sup>Ga (1.9), <sup>44</sup>Sc and <sup>133</sup>La (2.9), <sup>55</sup>Co (3.2), <sup>85m</sup>Y (3.3), <sup>132</sup>La (4.8), <sup>152</sup>Tb (6.5), <sup>150</sup>Tb (7.1), <sup>90</sup>Nb (8.6), and <sup>86</sup>Y (13.6). Significant amounts (≥ 10%) of ≈0.5 MeV photons that may fall into the acceptance window of PET scanners are emitted by <sup>55</sup>Co, <sup>66</sup>Ga, <sup>85m</sup>Y, <sup>86</sup>Y, <sup>132</sup>La, and <sup>152</sup>Tb. Compton background from more energetic photons would be expected for <sup>44</sup>Sc, <sup>55</sup>Co, <sup>66</sup>Ga, <sup>86</sup>Y, <sup>90</sup>Nb, <sup>132</sup>La,<sup>150</sup>Tb, and <sup>152</sup>Tb. The mean positron ranges (mm) of <sup>64</sup>Cu (0.6), <sup>85m</sup>Y (1.0), <sup>45</sup>Ti (1.5), <sup>133</sup>La (1.6), <sup>43</sup>Sc and <sup>61</sup>Cu (1.7), <sup>55</sup>Co (2.1), <sup>44</sup>Sc and <sup>86</sup>Y (2.5), and <sup>90</sup>Nb (2.6) were lower than that of <sup>68</sup>Ga (3.6). DOTA chelation is applicable for most of the radiometals, though not ideal for <sup>61</sup>Cu/<sup>64</sup>Cu. Recent data showed that chelation of <sup>45</sup>Ti with DOTA is feasible. <sup>90</sup>Nb requires different complexing agents (e.g., DFO). Finally, they could be economically produced by proton-induced reactions at medical cyclotrons.</p><p><strong>Conclusion: </strong>In particular, <sup>43</sup>Sc, <sup>45</sup>Ti, and <sup>61</sup>Cu have overall excellent β<sup>+</sup> decay-characteristics for theranostic applications complementing <sup>177</sup>Lu-labelled small conjugates, and they could be sustainably produced. Like Lu, <sup>43</sup>Sc, <sup>45</sup>Ti and to a lesser extent <sup>61</sup>Cu could be labelled with DOTA.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"98"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582248/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of positron emitters for theranostic applications based on small bioconjugates highlighting <sup>43</sup>Sc, <sup>61</sup>Cu and <sup>45</sup>Ti.\",\"authors\":\"Elif Hindié, Ulli Köster, Christophe Champion, Paolo Zanotti-Fregonara, Clément Morgat\",\"doi\":\"10.1186/s40658-024-00699-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Targeted radionuclide therapy with <sup>177</sup>Lu-labelled small conjugates is expanding rapidly, and its success is linked to appropriate patient selection. Companion diagnostic conjugates are usually labelled with <sup>68</sup>Ga, offering good imaging up to ≈2 h post-injection. However, the optimal tumor-to-background ratio is often reached later. This study examined promising positron-emitting radiometals with half-lives between 3 h and 24 h and β<sup>+</sup> intensity (I<sub>β+</sub>) ≥ 15% and compared them to <sup>68</sup>Ga. The radiometals included: <sup>43</sup>Sc, <sup>44</sup>Sc, <sup>45</sup>Ti, <sup>55</sup>Co, <sup>61</sup>Cu, <sup>64</sup>Cu, <sup>66</sup>Ga, <sup>85m</sup>Y, <sup>86</sup>Y, <sup>90</sup>Nb, <sup>132</sup>La, <sup>150</sup>Tb and <sup>152</sup>Tb. <sup>133</sup>La (7.2% I<sub>β+</sub>) was also examined because it was recently discussed, in combination with <sup>132</sup>La, as a possible diagnostic match for <sup>225</sup>Ac.</p><p><strong>Methods: </strong>Total electron and photon doses per decay and per positron; possibly interfering γ-ray emissions; typical activities to be injected for same-day imaging; positron range; and available production routes were examined.</p><p><strong>Results: </strong>For each annihilation process useful for PET imaging, the total energy released (MeV) is: <sup>45</sup>Ti (1.5), <sup>43</sup>Sc (1.6), <sup>61</sup>Cu and <sup>64</sup>Cu (1.8), <sup>68</sup>Ga (1.9), <sup>44</sup>Sc and <sup>133</sup>La (2.9), <sup>55</sup>Co (3.2), <sup>85m</sup>Y (3.3), <sup>132</sup>La (4.8), <sup>152</sup>Tb (6.5), <sup>150</sup>Tb (7.1), <sup>90</sup>Nb (8.6), and <sup>86</sup>Y (13.6). Significant amounts (≥ 10%) of ≈0.5 MeV photons that may fall into the acceptance window of PET scanners are emitted by <sup>55</sup>Co, <sup>66</sup>Ga, <sup>85m</sup>Y, <sup>86</sup>Y, <sup>132</sup>La, and <sup>152</sup>Tb. Compton background from more energetic photons would be expected for <sup>44</sup>Sc, <sup>55</sup>Co, <sup>66</sup>Ga, <sup>86</sup>Y, <sup>90</sup>Nb, <sup>132</sup>La,<sup>150</sup>Tb, and <sup>152</sup>Tb. The mean positron ranges (mm) of <sup>64</sup>Cu (0.6), <sup>85m</sup>Y (1.0), <sup>45</sup>Ti (1.5), <sup>133</sup>La (1.6), <sup>43</sup>Sc and <sup>61</sup>Cu (1.7), <sup>55</sup>Co (2.1), <sup>44</sup>Sc and <sup>86</sup>Y (2.5), and <sup>90</sup>Nb (2.6) were lower than that of <sup>68</sup>Ga (3.6). DOTA chelation is applicable for most of the radiometals, though not ideal for <sup>61</sup>Cu/<sup>64</sup>Cu. Recent data showed that chelation of <sup>45</sup>Ti with DOTA is feasible. <sup>90</sup>Nb requires different complexing agents (e.g., DFO). Finally, they could be economically produced by proton-induced reactions at medical cyclotrons.</p><p><strong>Conclusion: </strong>In particular, <sup>43</sup>Sc, <sup>45</sup>Ti, and <sup>61</sup>Cu have overall excellent β<sup>+</sup> decay-characteristics for theranostic applications complementing <sup>177</sup>Lu-labelled small conjugates, and they could be sustainably produced. Like Lu, <sup>43</sup>Sc, <sup>45</sup>Ti and to a lesser extent <sup>61</sup>Cu could be labelled with DOTA.</p>\",\"PeriodicalId\":11559,\"journal\":{\"name\":\"EJNMMI Physics\",\"volume\":\"11 1\",\"pages\":\"98\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582248/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EJNMMI Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40658-024-00699-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-024-00699-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:使用 177Lu 标记的小型共轭物进行放射性核素靶向治疗的范围正在迅速扩大,其成功与否与患者的适当选择有关。辅助诊断共轭物通常用 68Ga 标记,可在注射后 2 小时内提供良好的成像。然而,肿瘤与背景的最佳比值往往要晚些时候才能达到。本研究考察了半衰期介于3小时至24小时之间、β+强度(Iβ+)≥15%的有前途的正电子发射放射性同位素,并将它们与68Ga进行了比较。放射性金属包括43Sc、44Sc、45Ti、55Co、61Cu、64Cu、66Ga、85mY、86Y、90Nb、132La、150Tb 和 152Tb。另外还研究了 133La(7.2% Iβ+),因为最近讨论认为它与 132La 组合在一起,可能与 225Ac 的诊断匹配:方法:研究了每次衰变和每个正电子的电子和光子总剂量;可能的干扰γ射线发射;为当天成像注入的典型放射性活度;正电子范围;以及可用的生产路线:对于 PET 成像有用的每种湮灭过程,释放的总能量(兆电子伏)为45Ti (1.5)、43Sc (1.6)、61Cu 和 64Cu (1.8)、68Ga (1.9)、44Sc 和 133La (2.9)、55Co (3.2)、85mY (3.3)、132La (4.8)、152Tb (6.5)、150Tb (7.1)、90Nb (8.6) 和 86Y (13.6)。55Co、66Ga、85mY、86Y、132La 和 152Tb 发射的大量(≥ 10%)≈0.5 MeV 光子可能会落入 PET 扫描仪的接受窗口。预计 44Sc、55Co、66Ga、86Y、90Nb、132La、150Tb 和 152Tb 的康普顿背景可能来自能量更高的光子。64Cu (0.6)、85mY (1.0)、45Ti (1.5)、133La (1.6)、43Sc 和 61Cu (1.7)、55Co (2.1)、44Sc 和 86Y (2.5) 以及 90Nb (2.6) 的平均正电子范围 (mm) 低于 68Ga (3.6)。DOTA 螯合作用适用于大多数放射性金属,但对 61Cu/64Cu 并不理想。最新数据显示,用 DOTA 对 45Ti 进行螯合是可行的。90Nb 则需要不同的络合剂(如 DFO)。最后,它们可以通过医用回旋加速器的质子诱导反应经济地生产出来:结论:43Sc、45Ti 和 61Cu 在治疗学应用方面具有出色的 β+ 衰变特性,可以补充 177Lu 标记的小型共轭物,而且可以持续生产。与 Lu 一样,43Sc、45Ti 和 61Cu 在较小程度上也可以用 DOTA 标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative analysis of positron emitters for theranostic applications based on small bioconjugates highlighting 43Sc, 61Cu and 45Ti.

Background: Targeted radionuclide therapy with 177Lu-labelled small conjugates is expanding rapidly, and its success is linked to appropriate patient selection. Companion diagnostic conjugates are usually labelled with 68Ga, offering good imaging up to ≈2 h post-injection. However, the optimal tumor-to-background ratio is often reached later. This study examined promising positron-emitting radiometals with half-lives between 3 h and 24 h and β+ intensity (Iβ+) ≥ 15% and compared them to 68Ga. The radiometals included: 43Sc, 44Sc, 45Ti, 55Co, 61Cu, 64Cu, 66Ga, 85mY, 86Y, 90Nb, 132La, 150Tb and 152Tb. 133La (7.2% Iβ+) was also examined because it was recently discussed, in combination with 132La, as a possible diagnostic match for 225Ac.

Methods: Total electron and photon doses per decay and per positron; possibly interfering γ-ray emissions; typical activities to be injected for same-day imaging; positron range; and available production routes were examined.

Results: For each annihilation process useful for PET imaging, the total energy released (MeV) is: 45Ti (1.5), 43Sc (1.6), 61Cu and 64Cu (1.8), 68Ga (1.9), 44Sc and 133La (2.9), 55Co (3.2), 85mY (3.3), 132La (4.8), 152Tb (6.5), 150Tb (7.1), 90Nb (8.6), and 86Y (13.6). Significant amounts (≥ 10%) of ≈0.5 MeV photons that may fall into the acceptance window of PET scanners are emitted by 55Co, 66Ga, 85mY, 86Y, 132La, and 152Tb. Compton background from more energetic photons would be expected for 44Sc, 55Co, 66Ga, 86Y, 90Nb, 132La,150Tb, and 152Tb. The mean positron ranges (mm) of 64Cu (0.6), 85mY (1.0), 45Ti (1.5), 133La (1.6), 43Sc and 61Cu (1.7), 55Co (2.1), 44Sc and 86Y (2.5), and 90Nb (2.6) were lower than that of 68Ga (3.6). DOTA chelation is applicable for most of the radiometals, though not ideal for 61Cu/64Cu. Recent data showed that chelation of 45Ti with DOTA is feasible. 90Nb requires different complexing agents (e.g., DFO). Finally, they could be economically produced by proton-induced reactions at medical cyclotrons.

Conclusion: In particular, 43Sc, 45Ti, and 61Cu have overall excellent β+ decay-characteristics for theranostic applications complementing 177Lu-labelled small conjugates, and they could be sustainably produced. Like Lu, 43Sc, 45Ti and to a lesser extent 61Cu could be labelled with DOTA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EJNMMI Physics
EJNMMI Physics Physics and Astronomy-Radiation
CiteScore
6.70
自引率
10.00%
发文量
78
审稿时长
13 weeks
期刊介绍: EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信