EJNMMI Physics最新文献

筛选
英文 中文
Sequential deep learning image enhancement models improve diagnostic confidence, lesion detectability, and image reconstruction time in PET. 序列深度学习图像增强模型提高了 PET 的诊断可信度、病灶可探测性和图像重建时间。
IF 4 2区 医学
EJNMMI Physics Pub Date : 2024-03-15 DOI: 10.1186/s40658-024-00632-4
Meghi Dedja, Abolfazl Mehranian, Kevin M Bradley, Matthew D Walker, Patrick A Fielding, Scott D Wollenweber, Robert Johnsen, Daniel R McGowan
{"title":"Sequential deep learning image enhancement models improve diagnostic confidence, lesion detectability, and image reconstruction time in PET.","authors":"Meghi Dedja, Abolfazl Mehranian, Kevin M Bradley, Matthew D Walker, Patrick A Fielding, Scott D Wollenweber, Robert Johnsen, Daniel R McGowan","doi":"10.1186/s40658-024-00632-4","DOIUrl":"10.1186/s40658-024-00632-4","url":null,"abstract":"<p><strong>Background: </strong>Investigate the potential benefits of sequential deployment of two deep learning (DL) algorithms namely DL-Enhancement (DLE) and DL-based time-of-flight (ToF) (DLT). DLE aims to enhance the rapidly reconstructed ordered-subset-expectation-maximisation algorithm (OSEM) images towards block-sequential-regularised-expectation-maximisation (BSREM) images, whereas DLT aims to improve the quality of BSREM images reconstructed without ToF. As the algorithms differ in their purpose, sequential application may allow benefits from each to be combined. 20 FDG PET-CT scans were performed on a Discovery 710 (D710) and 20 on Discovery MI (DMI; both GE HealthCare). PET data was reconstructed using five combinations of algorithms:1. ToF-BSREM, 2. ToF-OSEM + DLE, 3. OSEM + DLE + DLT, 4. ToF-OSEM + DLE + DLT, 5. ToF-BSREM + DLT. To assess image noise, 30 mm-diameter spherical VOIs were drawn in both lung and liver to measure standard deviation of voxels within the volume. In a blind clinical reading, two experienced readers rated the images on a five-point Likert scale based on lesion detectability, diagnostic confidence, and image quality.</p><p><strong>Results: </strong>Applying DLE + DLT reduced noise whilst improving lesion detectability, diagnostic confidence, and image reconstruction time. ToF-OSEM + DLE + DLT reconstructions demonstrated an increase in lesion SUV<sub>max</sub> of 28 ± 14% (average ± standard deviation) and 11 ± 5% for data acquired on the D710 and DMI, respectively. The same reconstruction scored highest in clinical readings for both lesion detectability and diagnostic confidence for D710.</p><p><strong>Conclusions: </strong>The combination of DLE and DLT increased diagnostic confidence and lesion detectability compared to ToF-BSREM images. As DLE + DLT used input OSEM images, and because DL inferencing was fast, there was a significant decrease in overall reconstruction time. This could have applications to total body PET.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"28"},"PeriodicalIF":4.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10942956/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140136544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Validation of image-derived input function using a long axial field of view PET/CT scanner for two different tracers. 使用长轴视场 PET/CT 扫描仪对两种不同示踪剂的图像衍生输入功能进行验证。
IF 4 2区 医学
EJNMMI Physics Pub Date : 2024-03-13 DOI: 10.1186/s40658-024-00628-0
Xavier Palard-Novello, Denise Visser, Nelleke Tolboom, Charlotte L C Smith, Gerben Zwezerijnen, Elsmarieke van de Giessen, Marijke E den Hollander, Frederik Barkhof, Albert D Windhorst, Bart Nm van Berckel, Ronald Boellaard, Maqsood Yaqub
{"title":"Validation of image-derived input function using a long axial field of view PET/CT scanner for two different tracers.","authors":"Xavier Palard-Novello, Denise Visser, Nelleke Tolboom, Charlotte L C Smith, Gerben Zwezerijnen, Elsmarieke van de Giessen, Marijke E den Hollander, Frederik Barkhof, Albert D Windhorst, Bart Nm van Berckel, Ronald Boellaard, Maqsood Yaqub","doi":"10.1186/s40658-024-00628-0","DOIUrl":"10.1186/s40658-024-00628-0","url":null,"abstract":"<p><strong>Background: </strong>Accurate image-derived input function (IDIF) from highly sensitive large axial field of view (LAFOV) PET/CT scanners could avoid the need of invasive blood sampling for kinetic modelling. The aim is to validate the use of IDIF for two kinds of tracers, 3 different IDIF locations and 9 different reconstruction settings.</p><p><strong>Methods: </strong>Eight [<sup>18</sup>F]FDG and 10 [<sup>18</sup>F]DPA-714 scans were acquired respectively during 70 and 60 min on the Vision Quadra PET/CT system. PET images were reconstructed using various reconstruction settings. IDIFs were taken from ascending aorta (AA), descending aorta (DA), and left ventricular cavity (LV). The calibration factor (CF) extracted from the comparison between the IDIFs and the manual blood samples as reference was used for IDIFs accuracy and precision assessment. To illustrate the effect of various calibrated-IDIFs on Patlak linearization for [<sup>18</sup>F]FDG and Logan linearization for [<sup>18</sup>F]DPA-714, the same target time-activity curves were applied for each calibrated-IDIF.</p><p><strong>Results: </strong>For [<sup>18</sup>F]FDG, the accuracy and precision of the IDIFs were high (mean CF ≥ 0.82, SD ≤ 0.06). Compared to the striatum influx (K<sub>i</sub>) extracted using calibrated AA IDIF with the updated European Association of Nuclear Medicine Research Ltd. standard reconstruction (EARL2), K<sub>i</sub> mean differences were < 2% using the other calibrated IDIFs. For [<sup>18</sup>F]DPA714, high accuracy of the IDIFs was observed (mean CF ≥ 0.86) except using absolute scatter correction, DA and LV (respectively mean CF = 0.68, 0.47 and 0.44). However, the precision of the AA IDIFs was low (SD ≥ 0.10). Compared to the distribution volume (V<sub>T</sub>) in a frontal region obtained using calibrated continuous arterial sampler input function as reference, V<sub>T</sub> mean differences were small using calibrated AA IDIFs (for example V<sub>T</sub> mean difference = -5.3% using EARL2), but higher using calibrated DA and LV IDIFs (respectively + 12.5% and + 19.1%).</p><p><strong>Conclusions: </strong>For [<sup>18</sup>F]FDG, IDIF do not need calibration against manual blood samples. For [<sup>18</sup>F]DPA-714, AA IDIF can replace continuous arterial sampling for simplified kinetic quantification but only with calibration against arterial blood samples. The accuracy and precision of IDIF from LAFOV PET/CT system depend on tracer, reconstruction settings and IDIF VOI locations, warranting careful optimization.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"25"},"PeriodicalIF":4.0,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10933214/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140109594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical feasibility study of early 30-minute dynamic FDG-PET scanning protocol for patients with lung lesions. 针对肺部病变患者的早期 30 分钟动态 FDG-PET 扫描方案的临床可行性研究。
IF 4 2区 医学
EJNMMI Physics Pub Date : 2024-03-05 DOI: 10.1186/s40658-024-00625-3
Fen Du, Xieraili Wumener, Yarong Zhang, Maoqun Zhang, Jiuhui Zhao, Jinpeng Zhou, Yiluo Li, Bin Huang, Rongliang Wu, Zeheng Xia, Zhiheng Yao, Tao Sun, Ying Liang
{"title":"Clinical feasibility study of early 30-minute dynamic FDG-PET scanning protocol for patients with lung lesions.","authors":"Fen Du, Xieraili Wumener, Yarong Zhang, Maoqun Zhang, Jiuhui Zhao, Jinpeng Zhou, Yiluo Li, Bin Huang, Rongliang Wu, Zeheng Xia, Zhiheng Yao, Tao Sun, Ying Liang","doi":"10.1186/s40658-024-00625-3","DOIUrl":"10.1186/s40658-024-00625-3","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Purpose: &lt;/strong&gt;This study aimed to evaluate the clinical feasibility of early 30-minute dynamic 2-deoxy-2-[&lt;sup&gt;18&lt;/sup&gt;F]fluoro-D-glucose (&lt;sup&gt;18&lt;/sup&gt;F-FDG) positron emission tomography (PET) scanning protocol for patients with lung lesions in comparison to the standard 65-minute dynamic FDG-PET scanning as a reference.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;Dynamic &lt;sup&gt;18&lt;/sup&gt;F-FDG PET images of 146 patients with 181 lung lesions (including 146 lesions confirmed by histology) were analyzed in this prospective study. Dynamic images were reconstructed into 28 frames with a specific temporal division protocol for the scan data acquired 65 min post-injection. Ki images and quantitative parameters Ki based on two different acquisition durations [the first 30 min (Ki-30 min) and 65 min (Ki-65 min)] were obtained by applying the irreversible two-tissue compartment model using in-house Matlab software. The two acquisition durations were compared for Ki image quality (including visual score analysis and number of lesions detected) and Ki value (including accuracy of Ki, the value of differential diagnosis of lung lesions and prediction of PD-L1 status) by Wilcoxon's rank sum test, Spearman's rank correlation analysis, receiver operating characteristic (ROC) curve, and the DeLong test. The significant testing level (alpha) was set to 0.05.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;The quality of the Ki-30 min images was not significantly different from the Ki-65 min images based on visual score analysis (P &gt; 0.05). In terms of Ki value, among 181 lesions, Ki-65 min was statistically higher than Ki-30 min (0.027 ± 0.017 ml/g/min vs. 0.026 ± 0.018 ml/g/min, P &lt; 0.05), while a very high correlation was obtained between Ki-65 min and Ki-30 min (r = 0.977, P &lt; 0.05). In the differential diagnosis of lung lesions, ROC analysis was performed on 146 histologically confirmed lesions, the area under the curve (AUC) of Ki-65 min, Ki-30 min, and SUVmax was 0.816, 0.816, and 0.709, respectively. According to the Delong test, no significant differences in the diagnostic accuracies were found between Ki-65 min and Ki-30 min (P &gt; 0.05), while the diagnostic accuracies of Ki-65 min and Ki-30 min were both significantly higher than that of SUVmax (P &lt; 0.05). In 73 (NSCLC) lesions with definite PD-L1 expression results, the Ki-65 min, Ki-30 min, and SUVmax in PD-L1 positivity were significantly higher than that in PD-L1 negativity (P &lt; 0.05). And no significant differences in predicting PD-L1 positivity were found among Ki-65 min, Ki-30 min, and SUVmax (AUC = 0.704, 0.695, and 0.737, respectively, P &gt; 0.05), according to the results of ROC analysis and Delong test.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusions: &lt;/strong&gt;This study indicates that an early 30-minute dynamic FDG-PET acquisition appears to be sufficient to provide quantitative images with good-quality and accurate Ki values for the assessment of lung lesions and prediction of PD-L1 expression. Protocols with a shortened early 30","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"23"},"PeriodicalIF":4.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10914647/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140027665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and validation of a prognostic nomogram model in locally advanced NSCLC based on metabolic features of PET/CT and hematological inflammatory indicators. 基于 PET/CT 代谢特征和血液炎症指标的局部晚期 NSCLC 预后提名图模型的开发与验证。
IF 4 2区 医学
EJNMMI Physics Pub Date : 2024-03-05 DOI: 10.1186/s40658-024-00626-2
Congjie Wang, Jian Fang, Tingshu Jiang, Shanliang Hu, Ping Wang, Xiuli Liu, Shenchun Zou, Jun Yang
{"title":"Development and validation of a prognostic nomogram model in locally advanced NSCLC based on metabolic features of PET/CT and hematological inflammatory indicators.","authors":"Congjie Wang, Jian Fang, Tingshu Jiang, Shanliang Hu, Ping Wang, Xiuli Liu, Shenchun Zou, Jun Yang","doi":"10.1186/s40658-024-00626-2","DOIUrl":"10.1186/s40658-024-00626-2","url":null,"abstract":"<p><strong>Background: </strong>We combined the metabolic features of <sup>18</sup>F-FDG-PET/CT and hematological inflammatory indicators to establish a predictive model of the outcomes of patients with locally advanced non-small cell lung cancer (LA-NSCLC) receiving concurrent chemoradiotherapy.</p><p><strong>Results: </strong>A predictive nomogram was developed based on sex, CEA, systemic immune-inflammation index (SII), mean SUV (SUVmean), and total lesion glycolysis (TLG). The nomogram presents nice discrimination that yielded an AUC of 0.76 (95% confidence interval: 0.66-0.86) to predict 1-year PFS, with a sensitivity of 63.6%, a specificity of 83.3%, a positive predictive value of 83.7%, and a negative predictive value of 62.9% in the training set. The calibration curves and DCA suggested that the nomogram had good calibration and fit, as well as promising clinical effectiveness in the training set. In addition, survival analysis indicated that patients in the low-risk group had a significantly longer mPFS than those in the high-risk group (16.8 months versus 8.4 months, P < 0.001). Those results were supported by the results in the internal and external test sets.</p><p><strong>Conclusions: </strong>The newly constructed predictive nomogram model presented promising discrimination, calibration, and clinical applicability and can be used as an individualized prognostic tool to facilitate precision treatment in clinical practice.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"24"},"PeriodicalIF":4.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10914655/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140027666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Feasibility study of a SiPM-fiber detector for non-invasive measurement of arterial input function for preclinical and clinical positron emission tomography. 更正:用于临床前和临床正电子发射断层扫描动脉输入功能无创测量的 SiPM 纤维探测器的可行性研究。
IF 4 2区 医学
EJNMMI Physics Pub Date : 2024-03-04 DOI: 10.1186/s40658-024-00624-4
Sara de Scals, Luis Mario Fraile, José Manuel Udías, Laura Martínez Cortés, Marta Oteo, Miguel Ángel Morcillo, José Luis Carreras-Delgado, María Nieves Cabrera-Martín, Samuel España
{"title":"Correction: Feasibility study of a SiPM-fiber detector for non-invasive measurement of arterial input function for preclinical and clinical positron emission tomography.","authors":"Sara de Scals, Luis Mario Fraile, José Manuel Udías, Laura Martínez Cortés, Marta Oteo, Miguel Ángel Morcillo, José Luis Carreras-Delgado, María Nieves Cabrera-Martín, Samuel España","doi":"10.1186/s40658-024-00624-4","DOIUrl":"10.1186/s40658-024-00624-4","url":null,"abstract":"","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"22"},"PeriodicalIF":4.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912379/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140021220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of kilovoltage and quality reference mAs on CT-based attenuation correction in 177Lu SPECT/CT imaging: a phantom study 千伏电压和质量参考毫安对基于 CT 的 177Lu SPECT/CT 成像衰减校正的影响:一项模型研究
IF 4 2区 医学
EJNMMI Physics Pub Date : 2024-02-26 DOI: 10.1186/s40658-024-00622-6
Maikol Salas-Ramirez, Julian Leube, Michael Lassmann, Johannes Tran-Gia
{"title":"Effect of kilovoltage and quality reference mAs on CT-based attenuation correction in 177Lu SPECT/CT imaging: a phantom study","authors":"Maikol Salas-Ramirez, Julian Leube, Michael Lassmann, Johannes Tran-Gia","doi":"10.1186/s40658-024-00622-6","DOIUrl":"https://doi.org/10.1186/s40658-024-00622-6","url":null,"abstract":"CT-based attenuation correction (CT-AC) plays a major role in accurate activity quantification by SPECT/CT imaging. However, the effect of kilovoltage peak (kVp) and quality-reference mAs (QRM) on the attenuation coefficient image (μ-map) and volume CT dose index (CTDIvol) have not yet been systematically evaluated. Therefore, the aim of this study was to fill this gap and investigate the influence of kVp and QRM on CT-AC in 177Lu SPECT/CT imaging. Seventy low-dose CT acquisitions of an Electron Density Phantom (seventeen inserts of nine tissue-equivalent materials) were acquired using various kVp and QRM combinations on a Siemens Symbia Intevo Bold SPECT/CT system. Using manufacturer reconstruction software, 177Lu μ-maps were generated for each CT image, and three low-dose CT related aspects were examined. First, the μ-map-based attenuation values (μmeasured) were compared with theoretical values (μtheoretical). Second, changes in 177Lu activity expected due to changes in the μ-map were calculated using a modified Chang method. Third, the noise in the μ-map was assessed by measuring the coefficient of variation in a volume of interest in the homogeneous section of the Electron Density Phantom. Lastly, two phantoms were designed to simulate attenuation in four tissue-equivalent materials for two different source geometries (1-mL and 10-mL syringes). 177Lu SPECT/CT imaging was performed using three different reconstruction algorithms (xSPECT Quant, Flash3D, STIR), and the SPECT-based activities were compared against the nominal activities in the sources. The largest relative errors between μmeasured and μtheoretical were observed in the lung inhale insert (range: 18%-36%), while it remained below 6% for all other inserts. The resulting changes in 177Lu activity quantification were -3.5% in the lung inhale insert and less than -2.3% in all other inserts. Coefficient of variation and CTDIvol ranged from 0.3% and 3.6 mGy (130 kVp, 35 mAs) to 0.4% and 0.9 mGy (80 kVp, 20 mAs), respectively. The SPECT-based activity quantification using xSPECT Quant reconstructions outperformed all other reconstruction algorithms. This study shows that kVp and QRM values in low-dose CT imaging have a minimum effect on quantitative 177Lu SPECT/CT imaging, while the selection of low values of kVp and QRM reduce the CTDIvol.","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"2015 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139969679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fit of biokinetic data in molecular radiotherapy: a machine learning approach 分子放射治疗中生物动力学数据的拟合:一种机器学习方法
IF 4 2区 医学
EJNMMI Physics Pub Date : 2024-02-22 DOI: 10.1186/s40658-024-00623-5
Davide Ciucci, Bartolomeo Cassano, Salvatore Donatiello, Federica Martire, Antonio Napolitano, Claudia Polito, Elena Solfaroli Camillocci, Gianluca Cervino, Ludovica Pungitore, Claudio Altini, Maria Felicia Villani, Milena Pizzoferro, Maria Carmen Garganese, Vittorio Cannatà
{"title":"Fit of biokinetic data in molecular radiotherapy: a machine learning approach","authors":"Davide Ciucci, Bartolomeo Cassano, Salvatore Donatiello, Federica Martire, Antonio Napolitano, Claudia Polito, Elena Solfaroli Camillocci, Gianluca Cervino, Ludovica Pungitore, Claudio Altini, Maria Felicia Villani, Milena Pizzoferro, Maria Carmen Garganese, Vittorio Cannatà","doi":"10.1186/s40658-024-00623-5","DOIUrl":"https://doi.org/10.1186/s40658-024-00623-5","url":null,"abstract":"In literature are reported different analytical methods (AM) to choose the proper fit model and to fit data of the time-activity curve (TAC). On the other hand, Machine Learning algorithms (ML) are increasingly used for both classification and regression tasks. The aim of this work was to investigate the possibility of employing ML both to classify the most appropriate fit model and to predict the area under the curve (τ). Two different ML systems have been developed for classifying the fit model and to predict the biokinetic parameters. The two systems were trained and tested with synthetic TACs simulating a whole-body Fraction Injected Activity for patients affected by metastatic Differentiated Thyroid Carcinoma, administered with [131I]I-NaI. Test performances, defined as classification accuracy (CA) and percentage difference between the actual and the estimated area under the curve (Δτ), were compared with those obtained using AM varying the number of points (N) of the TACs. A comparison between AM and ML were performed using data of 20 real patients. As N varies, CA remains constant for ML (about 98%), while it improves for F-test (from 62 to 92%) and AICc (from 50 to 92%), as N increases. With AM, $$Delta tau$$ can reach down to − 67%, while using ML $$Delta tau$$ ranges within ± 25%. Using real TACs, there is a good agreement between τ obtained with ML system and AM. The employing of ML systems may be feasible, having both a better classification and a better estimation of biokinetic parameters.","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"18 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139920909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetic 18F-FDG PET/CT imaging of hepatocellular carcinoma: a dual input four-compartment model 肝细胞癌的动力学 18F-FDG PET/CT 成像:双输入四室模型
IF 4 2区 医学
EJNMMI Physics Pub Date : 2024-02-22 DOI: 10.1186/s40658-024-00619-1
Tao Wang, Yinglei Deng, Sidan Wang, Jianfeng He, Shaobo Wang
{"title":"Kinetic 18F-FDG PET/CT imaging of hepatocellular carcinoma: a dual input four-compartment model","authors":"Tao Wang, Yinglei Deng, Sidan Wang, Jianfeng He, Shaobo Wang","doi":"10.1186/s40658-024-00619-1","DOIUrl":"https://doi.org/10.1186/s40658-024-00619-1","url":null,"abstract":"The endoplasmic reticulum plays an important role in glucose metabolism and has not been explored in the kinetic estimation of hepatocellular carcinoma (HCC) via 18F-fluoro-2-deoxy-d-glucose PET/CT. A dual-input four-compartment (4C) model, regarding endoplasmic reticulum was preliminarily used for kinetic estimation to differentiate 28 tumours from background liver tissue from 24 patients with HCC. Moreover, parameter images of the 4C model were generated from one patient with negative findings on conventional metabolic PET/CT. Compared to the dual-input three-compartment (3C) model, the 4C model has better fitting quality, a close transport rate constant (K1) and a dephosphorylation rate constant (k6/k4), and a different removal rate constant (k2) and phosphorylation rate constant (k3) in HCC and background liver tissue. The K1, k2, k3, and hepatic arterial perfusion index (HPI) from the 4C model and k3, HPI, and volume fraction of blood (Vb) from the 3C model were significantly different between HCC and background liver tissues (all P < 0.05). Meanwhile, the 4C model yielded additional kinetic parameters for differentiating HCC. The diagnostic performance of the top ten genes from the most to least common was HPI(4C), Vb(3C), HPI(3C), SUVmax, k5(4C), k3(3C), k2(4C), v(4C), K1(4C) and Vb(4C). Moreover, a patient who showed negative findings on conventional metabolic PET/CT had positive parameter images in the 4C model. The 4C model with the endoplasmic reticulum performed better than the 3C model and produced additional useful parameters in kinetic estimation for differentiating HCC from background liver tissue.","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"6 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139920918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative calibration of Tb-161 SPECT/CT in view of personalised dosimetry assessment studies. 针对个性化剂量评估研究的 Tb-161 SPECT/CT 定量校准。
IF 4 2区 医学
EJNMMI Physics Pub Date : 2024-02-19 DOI: 10.1186/s40658-024-00611-9
Lachlan McIntosh, Price Jackson, Brittany Emmerson, James P Buteau, Ramin Alipour, Grace Kong, Michael S Hofman
{"title":"Quantitative calibration of Tb-161 SPECT/CT in view of personalised dosimetry assessment studies.","authors":"Lachlan McIntosh, Price Jackson, Brittany Emmerson, James P Buteau, Ramin Alipour, Grace Kong, Michael S Hofman","doi":"10.1186/s40658-024-00611-9","DOIUrl":"10.1186/s40658-024-00611-9","url":null,"abstract":"<p><strong>Background: </strong>Terbium-161 (<sup>161</sup>Tb)-based radionuclide therapy poses an alternative to current Lutetium-177 (<sup>177</sup>Lu) approaches with the additional benefit of secondary Auger and conversion electron emissions capable of delivering high doses of localised damage to micro-metastases including single cells. Quantitative single-photon emission computed tomography, paired with computed tomography (SPECT/CT), enables quantitative measurement from post-therapy imaging. In view of dosimetry extrapolations, a Tb-161 sensitivity SPECT/CT camera calibration was performed using a method previously validated for <sup>177</sup>Lu.</p><p><strong>Methods: </strong>Serial imaging of a NEMA/IEC body phantom with Tb-161 was performed on SPECT/CT with low-energy high-resolution collimators employing a photopeak of 75 keV with a 20% width. Quantitative stability and recovery coefficients were investigated over a sequence of 19 scans with buffered <sup>161</sup>Tb solution at total phantom activity ranging from 70 to 4990 MBq.</p><p><strong>Results: </strong>Sphere recovery coefficients were 0.60 ± 0.05, 0.52 ± 0.07, 0.45 ± 0.07, 0.39 ± 0.07, 0.28 ± 0.08, and 0.20 ± 0.08 for spheres 37, 28, 22, 17, 13, and 10mm, respectively, when considered across all activity and scan durations with dual-energy window scatter correction. Whole-field reconstructed sensitivity was calculated as 1.42E-5 counts per decay. Qualitatively, images exhibited no visual artefacts and were comparable to <sup>177</sup>Lu SPECT/CT.</p><p><strong>Conclusions: </strong>Quantitative SPECT/CT of <sup>161</sup>Tb is feasible over a range of activities enabling dosimetry analogous to <sup>177</sup>Lu whilst also producing suitable imaging for clinical review. This has been incorporated into a prospective trial of <sup>161</sup>Tb-PSMA for men with metastatic prostate cancer.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"18"},"PeriodicalIF":4.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10876500/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139899536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phantom study and clinical application of total-body 18F-FDG PET/CT imaging: How to use small voxel imaging better? 全身 18F-FDG PET/CT 成像的模型研究与临床应用:如何更好地使用小体素成像?
IF 4 2区 医学
EJNMMI Physics Pub Date : 2024-02-15 DOI: 10.1186/s40658-023-00597-w
Chi Qi, Xiuli Sui, Haojun Yu, Siyang Wang, Yan Hu, Hongyan Sun, Xinlan Yang, Yihan Wang, Yun Zhou, Hongcheng Shi
{"title":"Phantom study and clinical application of total-body <sup>18</sup>F-FDG PET/CT imaging: How to use small voxel imaging better?","authors":"Chi Qi, Xiuli Sui, Haojun Yu, Siyang Wang, Yan Hu, Hongyan Sun, Xinlan Yang, Yihan Wang, Yun Zhou, Hongcheng Shi","doi":"10.1186/s40658-023-00597-w","DOIUrl":"10.1186/s40658-023-00597-w","url":null,"abstract":"<p><strong>Background: </strong>Conventional PET/CT imaging reconstruction is typically performed using voxel size of 3.0-4.0 mm in three axes. It is hypothesized that a smaller voxel sizes could improve the accuracy of small lesion detection. This study aims to explore the advantages and conditions of small voxel imaging on clinical application.</p><p><strong>Methods: </strong>Both NEMA IQ phantom and 30 patients with an injected dose of 3.7 MBq/kg were scanned using a total-body PET/CT (uEXPLORER). Images were reconstructed using matrices of 192 × 192, 512 × 512, and 1024 × 1024 with scanning duration of 3 min, 5 min, 8 min, and 10 min, respectively.</p><p><strong>Results: </strong>In the phantom study, the contrast recovery coefficient reached the maximum in matrix group of 512 × 512, and background variability increased as voxel size decreased. In the clinical study, SUV<sub>max</sub>, SD, and TLR increased, while SNR decreased as the voxel size decreased. When the scanning duration increased, SNR increased, while SUV<sub>max</sub>, SD, and TLR decreased. The SUV<sub>mean</sub> was more reluctant to the changes in imaging matrix and scanning duration. The mean subjective scores for all 512 × 512 groups and 1024 × 1024 groups (scanning duration ≥ 8 min) were over three points. One false-positive lesion was found in groups of 512 × 512 with scanning duration of 3 min, 1024 × 1024 with 3 min and 5 min, respectively. Meanwhile, the false-negative lesions found in group of 192 × 192 with duration of 3 min and 5 min, 512 × 512 with 3 min and 1024 × 1024 with 3 min and 5 min were 5, 4, 1, 4, and 1, respectively. The reconstruction time and storage space occupation were significantly increased as the imaging matrix increased.</p><p><strong>Conclusions: </strong>PET/CT imaging with smaller voxel can improve SUV<sub>max</sub> and TLR of lesions, which is advantageous for the diagnosis of small or hypometabolic lesions if with sufficient counts. With an <sup>18</sup>F-FDG injection dose of 3.7 MBq/kg, uEXPLORER PET/CT imaging using matrix of 512 × 512 with 5 min or 1024 × 1024 with 8 min can meet the image requirements for clinical use.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"17"},"PeriodicalIF":4.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10869323/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139734759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信