利用红外跟踪技术对走动式 PET 扫描仪和标准轴向视场宠物扫描仪中的患者运动进行定量分析。

IF 3 2区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Rabia Aziz, Jens Maebe, Florence Marie Muller, Yves D'Asseler, Stefaan Vandenberghe
{"title":"利用红外跟踪技术对走动式 PET 扫描仪和标准轴向视场宠物扫描仪中的患者运动进行定量分析。","authors":"Rabia Aziz, Jens Maebe, Florence Marie Muller, Yves D'Asseler, Stefaan Vandenberghe","doi":"10.1186/s40658-024-00704-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Long-axial field-of-view (LAFOV) Positron Emission Tomography (PET) scanners provide high sensitivity, but throughput is limited because of time-consuming patient positioning. To enhance throughput, a novel Walk-Through PET (WT-PET) scanner has been developed, allowing patients to stand upright, supported by an adjustable headrest and hand supports. This study evaluates the degree of motion in the WT-PET system and compares it with the standard PET-CT.</p><p><strong>Methods: </strong>Three studies were conducted with healthy volunteers to estimate motion. The first two studies assessed motion in the WT-PET's Design I (Study 1) and Design II (Study 2), while the third study compared motion on a standard PET-CT scanner bed (Study 3). Infrared markers placed on the head, shoulders, chest, and abdomen were tracked and processed using image-processing techniques involving thresholding and connected component analysis. Videos were recorded for normal breathing and breath-holding conditions, and 2D centroids were transformed into 3D coordinates using depth information.</p><p><strong>Results: </strong>The results shows a significant reduction in motion during breath-holding, especially for the abdomen. Mean motion distances decreased from 2.63 mm to 2.18 mm in Study 1 and from 2.42 mm to 1.67 mm in Study 2. Statistical analysis revealed notable differences in motion between the WT-PET and mCT scanners. The Shapiro-Wilk test indicated non-normal motion distributions in the head, right shoulder, and abdomen for both systems, leading to the use of the Wilcoxon signed-rank test for all markers. Significant differences were found in the right shoulder (p = 0.0266), left shoulder (p = 0.0004) and chest (p < 0.0001) but no significant differences were observed in the head (p = 0.1327) and abdomen (p = 0.8404).</p><p><strong>Conclusion: </strong>This study provides a comprehensive analysis of patient motion in a WT-PET scanner with respect to the standard PET. The findings highlight a significant increase in shoulder and chest motion, while the head and abdomen regions showed more stability.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"99"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586328/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantitative analysis of patient motion in walk-through PET scanner and standard axial field of view pet scanner using infrared-based tracking.\",\"authors\":\"Rabia Aziz, Jens Maebe, Florence Marie Muller, Yves D'Asseler, Stefaan Vandenberghe\",\"doi\":\"10.1186/s40658-024-00704-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Long-axial field-of-view (LAFOV) Positron Emission Tomography (PET) scanners provide high sensitivity, but throughput is limited because of time-consuming patient positioning. To enhance throughput, a novel Walk-Through PET (WT-PET) scanner has been developed, allowing patients to stand upright, supported by an adjustable headrest and hand supports. This study evaluates the degree of motion in the WT-PET system and compares it with the standard PET-CT.</p><p><strong>Methods: </strong>Three studies were conducted with healthy volunteers to estimate motion. The first two studies assessed motion in the WT-PET's Design I (Study 1) and Design II (Study 2), while the third study compared motion on a standard PET-CT scanner bed (Study 3). Infrared markers placed on the head, shoulders, chest, and abdomen were tracked and processed using image-processing techniques involving thresholding and connected component analysis. Videos were recorded for normal breathing and breath-holding conditions, and 2D centroids were transformed into 3D coordinates using depth information.</p><p><strong>Results: </strong>The results shows a significant reduction in motion during breath-holding, especially for the abdomen. Mean motion distances decreased from 2.63 mm to 2.18 mm in Study 1 and from 2.42 mm to 1.67 mm in Study 2. Statistical analysis revealed notable differences in motion between the WT-PET and mCT scanners. The Shapiro-Wilk test indicated non-normal motion distributions in the head, right shoulder, and abdomen for both systems, leading to the use of the Wilcoxon signed-rank test for all markers. Significant differences were found in the right shoulder (p = 0.0266), left shoulder (p = 0.0004) and chest (p < 0.0001) but no significant differences were observed in the head (p = 0.1327) and abdomen (p = 0.8404).</p><p><strong>Conclusion: </strong>This study provides a comprehensive analysis of patient motion in a WT-PET scanner with respect to the standard PET. The findings highlight a significant increase in shoulder and chest motion, while the head and abdomen regions showed more stability.</p>\",\"PeriodicalId\":11559,\"journal\":{\"name\":\"EJNMMI Physics\",\"volume\":\"11 1\",\"pages\":\"99\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586328/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EJNMMI Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40658-024-00704-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-024-00704-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:长轴视场(LAFOV)正电子发射计算机断层成像(PET)扫描仪具有高灵敏度,但由于病人定位费时,因此扫描量有限。为了提高吞吐量,我们开发了一种新颖的穿行正电子发射计算机断层成像(WT-PET)扫描仪,允许患者在可调节头枕和手部支撑物的支持下直立站立。本研究评估了 WT-PET 系统的运动程度,并将其与标准 PET-CT 进行了比较:方法:对健康志愿者进行了三项研究,以估计运动。前两项研究评估了 WT-PET 设计 I(研究 1)和设计 II(研究 2)中的运动情况,第三项研究则比较了标准 PET-CT 扫描床上的运动情况(研究 3)。对放置在头部、肩部、胸部和腹部的红外标记进行跟踪,并使用阈值化和连接成分分析等图像处理技术进行处理。录制了正常呼吸和憋气状态下的视频,并利用深度信息将二维中心点转换为三维坐标:结果显示,憋气时的运动明显减少,尤其是腹部。研究 1 的平均运动距离从 2.63 毫米降至 2.18 毫米,研究 2 的平均运动距离从 2.42 毫米降至 1.67 毫米。统计分析显示,WT-PET 扫描仪和 mCT 扫描仪之间的运动差异显著。Shapiro-Wilk 检验表明,两种系统在头部、右肩和腹部的运动分布均非正态分布,因此对所有标记物均采用 Wilcoxon 符号秩检验。发现右肩(p = 0.0266)、左肩(p = 0.0004)和胸部(p < 0.0001)存在显著差异,但头部(p = 0.1327)和腹部(p = 0.8404)无显著差异:本研究全面分析了 WT-PET 扫描仪与标准 PET 相比患者的运动情况。研究结果表明,肩部和胸部的运动明显增加,而头部和腹部则更加稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative analysis of patient motion in walk-through PET scanner and standard axial field of view pet scanner using infrared-based tracking.

Background: Long-axial field-of-view (LAFOV) Positron Emission Tomography (PET) scanners provide high sensitivity, but throughput is limited because of time-consuming patient positioning. To enhance throughput, a novel Walk-Through PET (WT-PET) scanner has been developed, allowing patients to stand upright, supported by an adjustable headrest and hand supports. This study evaluates the degree of motion in the WT-PET system and compares it with the standard PET-CT.

Methods: Three studies were conducted with healthy volunteers to estimate motion. The first two studies assessed motion in the WT-PET's Design I (Study 1) and Design II (Study 2), while the third study compared motion on a standard PET-CT scanner bed (Study 3). Infrared markers placed on the head, shoulders, chest, and abdomen were tracked and processed using image-processing techniques involving thresholding and connected component analysis. Videos were recorded for normal breathing and breath-holding conditions, and 2D centroids were transformed into 3D coordinates using depth information.

Results: The results shows a significant reduction in motion during breath-holding, especially for the abdomen. Mean motion distances decreased from 2.63 mm to 2.18 mm in Study 1 and from 2.42 mm to 1.67 mm in Study 2. Statistical analysis revealed notable differences in motion between the WT-PET and mCT scanners. The Shapiro-Wilk test indicated non-normal motion distributions in the head, right shoulder, and abdomen for both systems, leading to the use of the Wilcoxon signed-rank test for all markers. Significant differences were found in the right shoulder (p = 0.0266), left shoulder (p = 0.0004) and chest (p < 0.0001) but no significant differences were observed in the head (p = 0.1327) and abdomen (p = 0.8404).

Conclusion: This study provides a comprehensive analysis of patient motion in a WT-PET scanner with respect to the standard PET. The findings highlight a significant increase in shoulder and chest motion, while the head and abdomen regions showed more stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EJNMMI Physics
EJNMMI Physics Physics and Astronomy-Radiation
CiteScore
6.70
自引率
10.00%
发文量
78
审稿时长
13 weeks
期刊介绍: EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信